Predicting SuSy & B-tagging in 2012 with ATLAS

Michaël Ughetto

1 Predicting SuSy

SuSy Spectrum calculator Spectrum Recipe Status and Prospects

SuSy basics

SuperSymmetry \equiv Spacetime symmetry

Fermionic generator such that:

 $Q|{
m fermion}
angle=|{
m boson}
angle$

$$Q|\mathsf{boson}
angle = |\mathsf{fermion}
angle$$

Selected piece of superalgebra:

$$[Q_{\alpha i}, P_{\mu}] = 0$$

SuSy does not change mass!

But obviously no scalar electrons. . . Or fermionic photons. . .

SuSy must be broken $\textcircled{\bigcirc}$

SuSy Spectrum calculator Spectrum Recipe Status and Prospects

Searching for supersymmetry

SuSy spectrum calculators

- ISASUGRA
- SOFTSUSY
- SPheno
- SuSpect2

SuSy searches relies on a basic component, the mass spectrum of the theory

SuSpect

SuSpect2 is a **Su**persymetric **Spect**rum calculator by A.Djouadi, G.Moultaka and J-L.Kneur:

- well-known code, robust, widely tested
- getting harder and harder to add new features
- published in 2005, since then SuSy landscape changed a lot

We need to broaden the possibilities of SuSpect, this is the goal of **SuSpect3**:

- We don't know what's around the corner so a more flexible code is essential
- Lots of new features are requested by users

I'm working on this with D.Zerwas and the former authors

Spectrum recipe

You need:

- field content of your theory: will give you masse matrices and mixings
- Renormalization Group Equations: how your Lagrangian parameters evolve with Q
- some "basic" knowledge of the Standard Model: M_Z boundary conditions
- some high energy boundary(ies): eg, what happens at GUT? (usually your SuSy breaking terms)
- an EWSB mechanism (effective scalar potential and a way to compute its parameters)

Put everything in an iterative process, if you're lucky enough, you'll get results.

SuSy Spectrum calculator Spectrum Recipe Status and Prospects

Overview of the algo.

SuSpect3 status:

- Code is working and useable (for mSUGRA, GMSB, AMSB, Compressed SuSy, low-scale SuSy)
- RGE, EWSB criterion, GUT definition, mass matrices can be modified easily by users
- automated generation of all those sub-bricks with Mathematica code have been started (FeynRules, SARAH)
- ▶ lot of "modern novelties": ROOT output, multithreading
- commissioning started
- alpha release for early 2013

2 B-Tagging with ATLAS

What is b-tagging? Simple b-tagging Combined b-tagging B-tagging in 2013

About b-tagging

B-tagging aims to identify jet coming from b-quarks fragmentation, used in:

- Top physics
- Higgs physics
- BSM searches

► ...

B-tagging takes advantage of hard b-quarks fragmentation and of the relative long-lifetime of B-hadrons to identify jets coming from a b-quark

- B-hadrons: $c au \simeq$ 450 μ m (contains a b-quark)
- D-hadrons: $c\tau \simeq 330 \ \mu m$ (contains a c-quark)

What is b-tagging? Simple b-tagging Combined b-tagging B-tagging in 2013

The cut paradigm

Goal is to build a discriminant between background(light jets, c-jets) and our signal, the b-jets, for that we can use:

- track properties
- secondary vertex properties

Two important quantities here:

 e_b, b-tagging efficiency: fraction of true b-jets labelled as b-jets

ϵ_u, light jet mistag rate: fraction of true light jets labelled as b-jets

What is b-tagging? Simple b-tagging Combined b-tagging B-tagging in 2013

Impact parameter based tagger

 tracks associated to a b-jet are expected to have a positive impact parameter

SuSpect3 B-tagging Conclusion B-tagging in 201

Log-Likelihood Ratio in action

For each track we compute the likelihood of being associated to a b, c or light jets, then we use it to compute a b-tag weight for a jet:

$$\text{b-tag weight} = \sum_{\text{tracks}} \ln\left(\frac{b_i}{u_i}\right)$$

in ATLAS this the so-called **IP3D** tagger At $\epsilon_b = 70\%$:

ATLAS **IP3D**: $\epsilon_u \sim 3.5\%$

Secondary Vertex

the same principle as $\ensuremath{\text{IP3D}}$, but uses other information to build the LLR

- run the SV finding algo. in the jet
- ▶ if one is found (70% of time), use mass, energy fraction.. to compute the LLR

Another class of properties are the decay chain informations, this is the **JetFitter** algorithm

At $\epsilon_b = 70\%$:

ATLAS **SV1**: $\epsilon_u \sim 4.5\%$ ATLAS **JetFitter**: $\epsilon_u \sim 2\%$

What is b-tagging? Simple b-tagging Combined b-tagging B-tagging in 2013

Correlation between taggers

What is b-tagging? Simple b-tagging Combined b-tagging B-tagging in 2013

MV1

$\ensuremath{\text{MV1}}$ was the 2012 baseline tagger

- Artificial Neural Network combining:
 - IP3D weight: impact parameters information
 - SV1 weight: secondary vertex information
 - JetFitterCombNN: decay chain informations
- trained to discriminate light and b-jets

At $\epsilon_b = 70\%$:

ATLAS **MV1**: $\epsilon_u \sim 0.7\%$, $\epsilon_c \sim 20\%$ CMS **CSV**: $\epsilon_u \sim 2\%$, $\epsilon_c \sim 20\%$

B-tagging in 2013

In 2013 a new generation of taggers will be proposed:

- c-taggers:
 - growing activity for flavour-tagging
 - JetFitterCharm, a large ANN dedicated to c identification, will be used in 2013

MV3:

- large BDT using low-level b-tagging variables
- ► O(10%) light jet rejection improvement with respect to MV1
- trained in 3 flavors (bVSu, bVSc, cVSu)
- under integration in ATLAS framework, will most likely be used this summer

SuSy searches

Theoretical code, SuSpect3:

- upcoming release
- wider model range than SuSpect2

ATLAS b-tagging:

• new taggers with $\mathcal{O}(10\%)$ improvements

I'm now switching to searches for EW production of SuSy:

Merci de votre attention