The tuning and the mass of the composite Higgs

Giuliano Panico

CERN

LAPTh Annecy – 13 Dec 2012

based on G. P., M. Redi, A. Tesi and A. Wulzer 1210.7114 [hep-ph]

Outline

Introduction

- 2 The general structure of Composite-Higgs Models
- **3** The "Minimal" Models
 - Double tuning
 - Light partners for a light Higgs
- 4 Beyond the "Minimal" Models
 - Multiple invariants
 - Totally composite t_R
- (5) Minimal tuning, light states and the LHC

6 Conclusions

Outline

1 Introduction

- The "Minimal" Models
 - Light partners for a light Higgs
- Beyond the "Minimal" Models Multiple invariants

Main **goal** of the LHC:

Unveil the nature of the EWSB mechanism

Need for **theoretical framework** to interpret the data:

- ► look for a **motivated** scenario
- develop and test hypothetical models

Introduction: The Hierarchy Problem

The **Standard Model** solution

- ► Higgs as an elementary scalar
- Minimal realization
- Excellent agreement with EW data
- ... but the Higgs mass is unstable under radiative corrections

$$\left. \delta m_h^2 \right|_{1-loop} \sim - \frac{\lambda_{top}^2}{8\pi^2} \Lambda_{UV}^2$$

this is known as the **Hierarchy problem**

Introduction: The role of New Physics

New physics can solve the Hierarchy problem by $\underline{cancelling}$ the quadratic **divergence**.

The **cut-off** is set by the scale of the new dynamics:

$$\left. \delta m_h^2 \right|_{1-loop} \sim - \frac{\lambda_{top}^2}{8\pi^2} \Lambda_{NP}^2$$

Some tuning is $\underline{unavoidable}$ if the new physics is at high scale

$$\Delta \gtrsim \frac{\delta m_h^2}{m_h^2} \simeq \left(\frac{\Lambda_{NP}}{400 \text{ GeV}}\right)^2 \left(\frac{125 \text{ GeV}}{m_h}\right)^2$$

Introduction: Solutions to the Hierarchy Problem

The **solutions** to the **Hierarchy Problem** belong to two broad classes

Weakly coupled UV physics

► known example: low-energy Supersymmetry

Strongly coupled UV physics

Presence of an <u>Higgs-like state</u> coming from the strong sector

Introduction: The Composite Higgs

Higgs as a composite state from a strong dynamics [Georgi, Kaplan]

The Hierarchy Problem is solved

- Corrections to m_h screened at $1/I_H$
- ► Higgs mass is IR-saturated

Introduction: The Composite Higgs

Postulate a new strong sector

Higgs naturally light $(m_h \ll m_\rho, m_\psi)$ if it is a <u>Goldstone</u>

- Underlying symmetry structure: $f \simeq m_{\rho}/g_{\rho} \simeq m_{\psi}/g_{\psi}$
- Separation of scales for EW precision data: $v \ll f$

Introduction: Realizations of the Composite-Higgs Idea

Extra dimensions implement the Composite Higgs idea through **Holography** (*eg.* MCHM) [Contino, Nomura, Pomarol, Agashe, ...]

- Extra-dimensional gauge theory
- Higgs comes from the 5th component of gauge fields (Gauge-Higgs Unification)

More general realizations can be obtained using **4d effective descriptions** (*eg.* DCHM) [G. P., Wulzer; De Curtis, Redi, Tesi]

- The Higgs is described by a non-linear σ-model [Giudice et al. (2007), Barbieri et al. (2007)]
- Resonances can be described by an "hidden local symmetry" Lagrangian (analogous to mesons in QCD)

Outline

1 Introduction

2 The general structure of Composite-Higgs Models

- 3 The "Minimal" Models
 - Double tuning
 - Light partners for a light Higgs
- 4 Beyond the "Minimal" Models
 Multiple invariants
 - Totally composite t_R
- 5 Minimal tuning, light states and the LHC

6 Conclusions

The structure of Composite-Higgs models

Composite sector with a spontaneously broken **global** symmetry

 $SO(5) \rightarrow SO(4)$

Higgs described by a **non-linear** σ -model

The non-linearities induce interesting experimental signatures

[Giudice et al., Barbieri et al., ...]

$$\lambda \simeq \lambda_{SM} (1 + c\xi)$$
 $\xi = (v/f)^2$

Partial compositeness

SM fields obey partial compositeness

$$\mathcal{L}_{mix} = y_L f \overline{q}_L \mathcal{O}_L + y_R f \overline{t}_R \mathcal{O}_R + \text{h.c.}$$

In a low-energy effective description this translates into a mixing with fermionic resonances

$$\mathcal{L}_{mix} = y_L f \ \overline{q}_L \Psi_R + y_R f \ \overline{t}_R \Psi_L + \text{h.c.}$$

The SM fields are an **admixture** of elementary and composite states

$$|SM_n\rangle = \cos \varphi_n |elem_n\rangle + \sin \varphi_n |comp_n\rangle$$

Generation of the Higgs potential

The mixing gives a small breaking of the global symmetry

Higgs potential radiatively induced (mostly by top partners)

The quantum numbers of the $\mathcal{O}_{L,R}$ operators fix the structure of the potential in a $y_{L,R}/g_{\psi}$ expansion. [Mrazek, Pomarol et al.]

$$V^{(2)} \sim \frac{N_c}{16\pi^2} m_{\psi}^4 \sum_i \left[\frac{y_L^2}{g_{\psi}^2} I_L^{(i)}(h/f) + \frac{y_R^2}{g_{\psi}^2} I_R^{(i)}(h/f) \right]$$
$$V^{(4)} \sim \frac{N_c}{16\pi^2} m_{\psi}^4 \sum_i \left[\frac{y_L^2 y_R^2}{g_{\psi}^4} I_{LR}^{(i)}(h/f) + \frac{y_L^4}{g_{\psi}^4} I_{LL}^{(i)}(h/f) + \frac{y_R^4}{g_{\psi}^4} I_{RR}^{(i)}(h/f) \right]$$

	I _L , I _R	I _{LL} , I _{RR} , I _{LR}
$r_L = r_R = 5$	$\sin^2(h/f)$	$\sin^{2n}(h/f) n=1,2$
$\textbf{r}_{L}=\textbf{r}_{R}=10$	$\sin^2(h/f)$	$\sin^{2n}(h/f) n=1,2$
$r_L = r_R = 14$	$\sin^2(h/f)$, $\sin^4(h/f)$	$\sin^{2n}(h/f)$ $n = 1, 2, 3, 4$
$r_L = r_R = 4$	$sin^2(h/2f)$	$\sin^{2n}(h/2f)$ $n=1,2$

EW Precision Tests

The new dynamics gives deviations in the EW observables

• \hat{S} from heavy gauge resonances

$$\widehat{S} \simeq rac{g_W^2}{g_
ho^2} \xi \simeq rac{m_W^2}{m_
ho^2}$$

bound on $m_{
ho}\gtrsim 2~{
m TeV}$

• \hat{T} from fermion loops $\hat{T} \sim \frac{N_c}{16\pi^2} \frac{y^4}{g_\rho^2} \xi \sim \frac{N_c}{16\pi^2} y_t^2 \xi \simeq 2 \cdot 10^{-2} \xi$ bound on $\xi \lesssim 0.2$

The constraints require a scale separation between v and f \Rightarrow a fine-tuning of $\mathcal{O}(1/\xi)$ is needed

Outline

1 Introduction

2 The general structure of Composite-Higgs Models

3 The "Minimal" Models • Double tuning • Light partners for a light Higgs

Beyond the "Minimal" Models
 Multiple invariants
 Totally composite te

5 Minimal tuning, light states and the LHC

6 Conclusions

The "Minimal" Models: Double tuning [G. P., Redi, Tesi, Wulzer]

All "minimal" models ($\mathcal{O}_{L,R} \in \mathbf{4}, \mathbf{5}, \mathbf{10}$) are in the same class:

Only <u>one invariant</u> at leading order

$$V \simeq \frac{N_c}{16\pi^2} g_{\psi}^2 f^4 y^2 \left[(\alpha_L + \alpha_R) \sin^2 \left(\frac{h}{f}\right) + \beta \frac{y^2}{g_{\psi}^2} \sin^4 \left(\frac{h}{f}\right) \right]$$
$$\alpha_{L,R}, \beta \sim \mathcal{O}(1)$$

To satisfy the constraint $\xi \ll 1$ we need to <u>tune</u> the **leading** terms with the **subleading** ones

An additional cancellation of $\alpha = \alpha_L + \alpha_R$ is needed $\Rightarrow \underline{\text{"Double" tuning}} \quad \Delta = \frac{\max(\alpha_L, \alpha_R)}{\alpha} \simeq \frac{1}{\xi} \frac{g_{\psi}^2}{y^2}$

The top mass

To get some quantitative estimates we need to connect the mixings $y_{L,R}$ to physical observables:

► Generation of the SM fermion masses

To get some quantitative estimates we need to connect the mixings $y_{L,R}$ to physical observables:

► Generation of the SM fermion masses

The top mass is generated through partial compositeness

$$y_t \simeq rac{y_L y_R}{g_\psi}$$

- We set a **common mass scale** for the resonances $m_{\psi} \simeq g_{\psi} f$
- ► We choose y_L ~ y_R, realized in explicit models and needed to minimize the tuning.

The Higgs mass

From the potential we extract the Higgs mass

$$m_h^2 \simeq \frac{N_c}{2\pi^2} y^4 v^2$$

We expect a rather heavy Higgs

$$m_h \simeq \sqrt{rac{N_c}{2\pi^2}} y_t g_\psi v \simeq 500 \,\, {
m GeV}\left(rac{g_\psi}{5}
ight)$$

The estimate reproduces the **upper bound**

... but in many configurations the Higgs mass is <u>smaller</u>

When **anomalously light** resonances are present

$$y_t \simeq y_L y_R \frac{f}{m_{light}}$$

► The presence of **light** top partners **enhances** the top Yukawa

Using the expression for the top mass we get

$$m_h \simeq \sqrt{\frac{N_c}{2\pi^2}} \frac{y_t m_{light}}{f} \simeq 100 \,\, {
m GeV}\left(rac{m_{light}}{f}
ight)$$

A light Higgs requires light partners

A light Higgs requires light partners

The degree of tuning

The estimate of the **tuning** can be rewritten:

$$\Delta \simeq \frac{1}{\xi} \frac{g_{\psi}^2}{y_t} \frac{f}{m_{light}} \simeq \frac{1}{\xi} 20 \left(\frac{125 \text{ GeV}}{m_h}\right) \left(\frac{g_{\psi}}{5}\right)^2$$

• A large fermion scale $m_{\psi} \simeq g_{\psi} f$ implies tuning

Outline

1 Introduction

- 2 The general structure of Composite-Higgs Models
- 3 The "Minimal" Models
 o Double tuning
 o Light partners for a light Higgs
- Beyond the "Minimal" Models
 Multiple invariants
 - Totally composite t_R
- 5 Minimal tuning, light states and the LHC

6 Conclusions

"Minimal" models are characterized by only one invariant in the Higgs potential at leading order

- presence of a "double" tuning
- necessity of light top partners

A large part of the models studied in the literature belong to this class (eg. $MCHM_{4,5,10}$)

Can we find more general set-ups with different properties?

Consider models with **multiple invariants** at leading order

Can be done with fermions in higher SO(5) reps. (eg. r = 14)

Multiple leading-order invariants

The Higgs potential now takes the form

$$V = \frac{N_c}{16\pi^2} g_{\psi}^2 f^4 y^2 \left[\left(\alpha_L + \alpha_R \right) \sin^2 \left(\frac{h}{f} \right) + \beta \sin^4 \left(\frac{h}{f} \right) \right]$$
$$\alpha_{L,R}, \beta \sim \mathcal{O}(1)$$

• We can tune with two terms of the **same order**.

The amount of tuning is
$${\color{black} {f minimal}} \qquad \Delta \simeq {1\over \xi}$$

The Higgs mass

The absence of "double" tuning makes the potential larger:

Without anomalously light partner $m_\psi \simeq g_\psi f$ the **Higgs mass** is

$$m_h \simeq \sqrt{\frac{N_c}{2\pi^2} y_t g_\psi^3 v^2} = 1 \, \mathrm{TeV} \left(\frac{g_\psi}{5}\right)^{3/2}$$

► The Higgs is **too heavy**

The Higgs mass with light partners

If **anomalously light partners** are present $y_t \simeq y_L y_R \frac{f}{m_{light}}$

... but due to the elementary-composite mixing we always have

$$m_{light} \gtrsim y f \quad \Rightarrow \quad y \gtrsim y_t$$

This imples a lower bound on the Higgs mass

$$m_h \gtrsim \sqrt{\frac{N_c}{2\pi^2}} y_t g_{\psi} v = 500 \,\, {
m GeV}\left(rac{g_{\psi}}{5}
ight)$$

A light Higgs requires:

- some additional tuning
- typical presence of anomalously light states

The case of a totally composite t_R

We can assume that the t_R is an SO(5) **singlet** from the **composite sector**

The case of a totally composite t_R

We can assume that the t_R is an SO(5) **singlet** from the **composite sector**

Only the y_L mixing breaks SO(5) and generate an Higgs **potential**.

A minimally-tuned model requires two leading invariants (can be obtained with fermions in the 14)

$$V = \frac{N_c}{16\pi^2} g_{\psi}^2 f^4 y_L^2 \left[\alpha \sin^2 \left(\frac{h}{f} \right) + \beta \sin^4 \left(\frac{h}{f} \right) \right], \quad \alpha, \beta \sim \mathcal{O}(1)$$

The amount of **tuning** is $\Delta = \frac{1}{\alpha} \simeq \frac{1}{\beta \xi}$

The Higgs mass

$$y_t \simeq y_L$$

The Higgs mass is somewhat reduced

$$m_h \simeq \sqrt{\beta} \sqrt{\frac{N_c}{2\pi^2} y_t^2 g_{\psi}^2 v^2} = \sqrt{\beta} \; 500 \; \mathrm{GeV}\left(\frac{g_{\psi}}{5}\right)$$

We still need some additional tuning to get $\beta < 1$:

$$\Delta \simeq \frac{1}{\xi} \frac{N_c}{2\pi^2} y_t^2 g_\psi^2 \frac{v^2}{m_h^2} \simeq \frac{1}{\xi} 16 \left(\frac{125 \text{ GeV}}{m_h}\right)^2 \left(\frac{g_\psi}{5}\right)^2$$

▶ For $m_h \simeq 125 \text{ GeV}$ similar tuning as in "minimal" models

The Higgs mass

We still need some additional tuning to get $\beta < 1$:

$$\Delta \simeq \frac{1}{\xi} \frac{N_c}{2\pi^2} y_t^2 g_{\psi}^2 \frac{v^2}{m_h^2} \simeq \frac{1}{\xi} 16 \left(\frac{125 \text{ GeV}}{m_h}\right)^2 \left(\frac{g_{\psi}}{5}\right)^2$$

▶ For $m_h \simeq 125 \text{ GeV}$ similar tuning as in "minimal" models

The elementary-composite mixing is now structurally minimized.

A light Higgs can be obtained without light resonances

... but some tuning is necessary

Outline

1 Introduction

- 2 The general structure of Composite-Higgs Models
- 3 The "Minimal" ModelsOouble tuning
 - Light partners for a light Higgs
- 4 Beyond the "Minimal" Models
 Multiple invariants
 - Totally composite t_R

5 Minimal tuning, light states and the LHC

6 Conclusions

The limit of small fermionic scale

Configuration with **minimal tuning** can be obtained only if the **fermionic scale is small**: $g_{\psi} \leq 2$.

In this case all the terms in the y expansion are of the same order

$$rac{y_L}{g_\psi} \sim rac{y_R}{g_\psi} \sim 1$$

► all models share similar properties

Costodial invariance $SO(4) \simeq SU(2)_L \times SU(2)_R$ implies the presence of **extended multiplets** of top partners

$$Q = (\mathbf{2}, \mathbf{2})_{2/3} = \begin{bmatrix} T & \mathbf{X}_{5/3} \\ B & T_{2/3} \end{bmatrix}, \qquad \widetilde{T} = (\mathbf{1}, \mathbf{1})_{2/3}$$

- New colored fermions strongly coupled to the top
- ► Exotic resonances

The experimental searches

The light states are easily accessible at the LHC

Available data already give significant bounds

 Already probing part of the parameter space

Outline

1 Introduction

- 2 The general structure of Composite-Higgs Models
- 3 The "Minimal" ModelsOouble tuning
 - Light partners for a light Higgs
- 4 Beyond the "Minimal" Models
 Multiple invariants
 - Totally composite t_R
- 5 Minimal tuning, light states and the LHC

6 Conclusions

Conclusions

We analyzed **quantitatively** the issue of **fine-tuning** in composite-Higgs models:

- "minimal" models suffer from a "double" tuning
- "non-minimal" constructions lead to a large Higgs mass

A separation of the fermionic ($m_{\psi} \lesssim 1 \text{ TeV}$) and bosonic mass scale ($m_{\rho} \gtrsim 2 \text{ TeV}$) is needed

Light states are predicted which are easily accessible at the LHC

available data already put some constraint

Conclusions

. . .

The general classification is a **key** to identify interesting alternative scenarios [Pomarol, Riva; G. P., Redi, Tesi, Wulzer]

- "Non-minimal" models
- ► Totally composite *t_R*

Backup slides

Light partners for a light Higgs

A more refined formula for the Higgs mass

$$m_h^2 \simeq rac{N_c}{\pi^2} rac{m_t^2}{f^2} rac{m_T^2 m_{\widetilde{T}}^2}{m_T^2 - m_{\widetilde{T}}^2} \log rac{m_T^2}{m_{\widetilde{T}}^2}$$

• Good agreement with the numerical results

