Les ondes gravitationnelles à portée de main

Séminaire au LPC 15 mars 2013

Gravitational waves

Gravitational waves as a probe

Gravitational wave spectrum

15 mars 2013

Pulsar timing arrays

- A galactic scale detector
 - Pulsars = cosmic clocks
 - nano-Hz band
- Probe stochastic background of super-massive black hole binaries
 - Upper limits for past 20 years
 - ♦ Ruled out SMBH binary in 3C66B

- Goal : weekly observations of ~20 millisecond pulsars over 5 - 10 years with TOA precisions of ~100 ns
 - International Pulsar Timing array

eLISA-NGO

Guaranteed sources, rich science program

- Super-massive black holes and large structure formation
- White-dwarf binary systems in the Galaxy
- Cosmology, ultra-strong gravity tests

• European avatar of the LISA project

- Reduced size and bandwidth
- Will apply for L2 mission selection in ESA Cosmic Vision program
 - » Launch ~2028

LISA Pathfinder

• Technical challenges

- eLISA-NGO = constellation of 3 satellites, 2 arms
- Drag-free control
 - » Control satellites around free-falling masses
- Laser interferometry to measure distances between test masses
 - » ~10 pm over 10^6 km

• LISA Pathfinder: technology demonstrator

- ♦ Inertial sensors, thrusters
- Laser interferometry, at same accuracy level as eLISA-NGO
- Will be launched in 2015

Ground based interferometric detectors: **Past and future**

Ground-based interferomters

1st generation (I)

GEO

LIGO - Hanford

LIGO - Livingston

Virgo

Data exchange agreement between LIGO and Virgo since 2007

1st generation (II)

LIGO Virgo

 Operating detectors at their nominal sensitivities took years of effort

2006

2007

VSR1

S5

- Long science data taking
- No detection, but some science!

More later…

2005

S4

2nd generation (I)

Seismic noise Improved seismic isolation

More later about technical challenges...

x10 distance x1000 volume More in a day of observation than in a year...

Thermal noise

Monolithic suspensions Improved mirror coatings Larger beam size

Quantum noise Higher laser power Thermal compensation Signal recycling DC detection

2nd generation (II)

• Toward an extended detector network

- KAGRA in Japan
- Third LIGO detector probably located in India
- Duty cycle
 - » ~80% at best for one detector
 - » ~50% for three detectors in coincidence
- Sky coverage
- Source localization capability

3rd generation

Sensitivity

- ◆ 10x better than 2nd generation
- Bandwidth starting at 1 Hz
- ♦ BNS / BBH to z ~ 4 / 10

Configuration

- Several large interferometers (30km?)
- Underground
- Improved technologies

Cryogenic, mirrors, laser, squeezing...

• Status

- ASPERA roadmap
- FP7 Design Study
 - » 2008-2011
- Construction?
 - » Probably not before 1st detection

From first generation to second generation ground based interferometric detectors: Science within reach

A variety of GW searches

All sky searches

- Compact coalescing binaries
- Burst sources
 - » Supernovae, cosmic strings...
- Continuous waves (spinning neutron stars)
- Stochastic background

• Targeted searches

- Known pulsars
- Neutron star oscillations
 - » SGR flares, pulsar glitches
- Gamma ray bursts
 - » Long & short
- High energy neutrinos

Transient data analysis in a nutshell

- The data are a stream of noise in which the burst and CBC searches try to identify rare and weak events
 - The noise is not Gaussian ("glitchy" detectors/environment) and not stationary
- Template searches for modeled

- Coincidences are our most powerful tool
 - Reduced false alarm rate
 - Background can be estimated by applying time offsets between detectors

Compact binary coalescences

• Final evolution stage of compact binary systems

Systems like PSR1913+16 reaching coalescence of the two stars

- » For ground based detectors, stellar mass black holes
- » Advanced detectors: up to intermediate mass black holes
- » Super-massive BH: lower frequency, space based detectors, pulsar timing

Phases of CBC evolution

Inspiral

- The realm of post-Newtonian expansions
- Accurate analytical computations
 - » adiabatic evolution of quasi-circular orbit
- Valid up to innermost stable circular orbit

 $f_{\rm ISCO} = \frac{2.8 M_{\odot}}{M}$ 1600 Hz

• Length ~
$$34 \left(\frac{\mathcal{M}}{M_{\odot}}\right)^{-5/3} \left(\frac{f_0}{40 \text{ Hz}}\right)^{-8/3} \text{ s}$$

- Plunge/Merger
 - The realm of numerical relativity
 - Duration << 1 s</p>
- Ringdown
 - The realm of black hole perturbation theory
 - Relaxation of perturbed final black hole

Duration << 1 s</p>

CBC: estimating the rates

- Uncertain, even for most confident predictions
- BNS
 - Extrapolations from observed Galactic binary pulsars
 - » Small sample, few parameters
 - From population-synthesis models
 - » Observational and theoretical constraints on parameters
- NS-BH and BBH
 - From population-synthesis models
 - » Many open questions for BBH
 - From extra-Galactic X-ray binaries
 - » IC10 X-1 and NGC300 X-1
 - » Formed by a 20-30 black hole and a massive Wolf-Rayet star
 - » Should evolve into a binary black hole with Mchirp~15 M_{\odot}

• Still an open point whether BNS or BBH dominate

CBC: initial detector rates

IFO	$Source^{a}$	$\dot{N}_{ m low}$	$\dot{N}_{ m re}$	$\dot{N}_{\rm pl}$	$\dot{N}_{\rm up}$
		yr^{-1}	yr^{-1}	yr^{-1}	yr^{-1}
	NS-NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	7×10^{-5}	0.004	0.1	
Initial	BH-BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			$< 0.001^{b}$	0.01^{c}
	IMBH-IMBH			$10^{-4 d}$	10 ⁻³ e
10^{-3}	GW data				
$(1 - 10^{-5})^{-10^{-5}}$		• R	ate upp GO-S6/	er limits fro Virgo-VSR	m 2-3 data
$^{-1}$ Estimates 10^{-8}	Models	• ~ ⁻ at	1 order op	of magnitud timistic esti	de mates
$\begin{bmatrix} \overleftarrow{\mathbf{B}} & 10^{-9} \\ 10^{-10} \end{bmatrix}$	NSBH BBH				

CBC: advanced detector rates

IFO	$Source^{a}$	$\dot{N}_{ m low}$	$\dot{N}_{\rm re}$	$\dot{N}_{\rm pl}$	$\dot{N}_{\rm up}$
		yr^{-1}	yr^{-1}	yr^{-1}	yr^{-1}
Advanced	NS-NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
	BH-BH	0.4	20	1000	
	IMRI into IMBH			10^{b}	300^{c}
	IMBH-IMBH			0.1^{d}	1^{e}

Realistic rates do get substantial for advanced detectors BBH visible up to 1 Gpc

Science with GW from compact binaries

General Relativity

- Test theory in strong field
 Test/constrain alternative gravity theories
- Astrophysics
 - Measure merger rates
 - » As a function of parameters
 - Inform source distribution
 - » Masses, spins, spatial distribution
 - Study effect of matter in BNS waveform
 - Short, hard GRBs
 - » Confirm or rule out merger progenitor

Cosmology

- ♦ CBC inspirals as standard sirens
 - » Independent measurement of Hubble constant

Challenges

→Sensitivity

→ Waveforms Known, but large

parameter space, not fully explored yet →Multi-messenger

astronomy

Many of the science goals require combining information from GW, electromagnetic and/or particle observations.

GRB-triggered CBC searches

• No detection so far, distance lower limits derived

CBC parameter estimation

- Using CBC GW sources for astrophysics or cosmology requires measuring source parameters
- Degeneracies among intrinsic parameters and among extrinsic parameters
- Individual component masses not well measured
 - Some combination of masses chirp mass accurately measured
 - » Drives phase evolution at leading order, mass ratio enters at higher orders
 - » Mass spin degeneracy
 - » Waveform uncertainties
- Distance
 - Distance inclination degeneracy
- Sky location
 - Primarily from time of flights across detectors
- An electromagnetic counterpart would help pinpoint location, lift some of the degeneracies, provide redshift

Burst GW: supernovae

- Galactic rate of core-collapse SN ~1 per 30-50 years
 - Within reach of 2nd generation detectors, but rare
 - (Lack of) detection will constrain SN mechanisms
- Expect 1 within 5 Mpc every 2-5 years

Needs 3rd generation detectors

Sensitivity estimated with Dimmelmaier et al. waveforms (bounce mechanism)

Continuous waves: initial detectors

GW upper limits beating spindown limit for two pulsars

- Crab @ ~60 Hz (LIGO data)
 - » GW energy < 2% of spin-down energy
 - » ε < 1.3×10^{-4}
- ◆ Vela @ ~22 Hz (Virgo data)
 - » GW energy < 35% of spin-down energy
 - » ε < 1.1×10^{-3}

All-sky searches

- ♦ S5 LIGO data
- At high frequency, sensitive to $\varepsilon = 10^{-6}$ up to ~500 pc

Other targeted searches

- 116 known millisecond and young pulsars with LIGO S5 data
 - » Best h limit 2.3×10⁻²⁶
 - » J1603-7202, 135 Hz
 - » Best ε limit 7.0×10⁻⁸
 - » J2124-3358, 406 Hz, 0.2 kpc

Continuous waves: advanced detectors

Minimum detectable amplitude with 1yr observation of Advanced Virgo, compared to spin-down limits of known pulsars

Significant fraction of the Galaxy probed for large ellipticities

Cosmological stochastic background

Big Bang Nucleosynthesis 10-4 LIGO S4 BBN CMB and matter upper limit on GW energy spectra density $\Omega_{GW}(f) = \frac{f}{\rho_c} \frac{d\rho_{GW}}{df}$ beaten ¹⁰⁻ with LIGO S5 data @ 100 Hz 10-6 Planck LIGO S5 Pulsar limit Cosmic strings 10-8 $2_{\rm GW}$ Some models partially - AdvLIGO excluded 10-10 LISA CMB large Pre-Big-Bang More models will be probed₁₀₋₁₂ angle with advanced detectors Inflation 10-14 10-16 10-12 10-8 100 104 10⁸ 10^{-4} Frequency (Hz)

Advanced Virgo optical scheme

Laser

Initial detectors ~10 W input power

Advanced detectors ~200 W

- Reduce shot noise
- → Improve high frequency sensitivity
- Cope with high power
 - Radiation pressure noise
 - Mirror thermal lensing
 - High power through input optics
- Requires new developments
 - Heavier mirrors
 - Improved thermal compensation
 - High power, low noise, input optics

Other requirements Beam quality Frequency noise Amplitude noise Vacuum Injection Beam jitter noise bench Acoustic enclosure Beam IMC addition 125 W 100W amplifier РМС 1 W 100W amplifier Pstab Servo-loops Electronics Seed Pump diodes Supply & cooling

Thermal compensation

Signal recycling

Sensitivity tunability

• Some degrees of freedom in the advanced detectors sensitivity curves

some contingencies too…

Can be tuned to detect/study various sources

Seismic isolation

- Isolate optics from ground motion
- Main attenuator already compliant but some upgrades foreseen
- New isolated benches for injection or detection

Monolithic suspensions

• Reduce suspension thermal noise

- Use fused silica fibers to suspend the test masses
- Mature technology implemented in Virgo+
 - But Advanced Virgo payload more complex

Mirrors

• Main requirements

- Radiation pressure noise mitigation
- Thermal noise reduction
- Scattering losses reduction
- Larger mass
 - ♦ 35 cm diameter, 20 cm thick, 42 kg
- Ultra-low absorption fused silica
- Scattering loss reduction
 - Sub-nanometer polishing needed
 - Ion beam polishing or corrective coating
- State of the art low loss coating

Vacuum

- Reduce noise due to index of refraction fluctuations
- Residual pressure in Virgo tubes
 - Current pressure ~ 10⁻⁷ mbar

Cryogenic vacuum link

♦ /100 reduction required

Tower

Dealing with scattered light

- Scattered light can couple back to main beam
 - Phase modulated by movement of scattering surface
 - Source of excess noise + non-stationary noise (glitches)
- Trap stray light
 - ♦ Baffles, beam dumps...
- Minimize coupling by seismically and acoustically isolating sensitive elements

Channel 1 at 941214827.625 with Q of 36.0

Toward multi-messenger astronomy

Exploiting all messengers

• Emblematic example: gamma ray bursts

- Expected gravitational wave sources
 - » Probe dynamics of central engine
- ♦ High energy neutrinos
 - » Matter radiation interaction
 - Burst afterglow
 - » Timescale // wavelength
- Isotropic radioactive decay?
- Search for GW associated with GRBs
- Search for GW-HEN coincidences
- Search for electromagnetic counterparts to GW events
 Fast follow-up program with partner telescopes / satellites

GW-triggered EM follow-ups

Key ingredients

- Low-latency analysis, including reliable estimate of events significance
- Fast source localization for potentially interesting events
- Procedures to clear events and send alerts
- Partners
 - » X-ray, optical, radio in LOOCUP program in 2009-2010

EM follow-up in advanced detector era

- A hot topic for internal discussion right now!
- Continue with MoU model for first detections
 - ◆ May issue open alerts later, in routine detection era
- Make sure all relevant partners join the fun
 - From big telescopes/satellites to dedicated, medium-size robotic telescopes
 - Open call will be issued
- Deal with poor sky localization from GW

Network	Sources localized within			Worst Area		
	1 deg ²	5 deg ²	10 deg ²	20 deg ²	(deg²) (SNR>8 per ITF)	Adapted from Fairhurst
HHLV	0.5%	6%	15%	42%	150	arXiv/1010.6192

• Get everyone interested, without raising unrealistic expectations

 First data in 2015-2016, final sensitivity reached ~2020, unpredictable rate of progress in between

Conclusion

- GW promise a new, powerful tool for fundamental physics, astrophysics, cosmology
- Field & community matured with 1st generation ground-based detectors
- Second generation detectors coming online soon
 - Go through construction, commissioning, observation and.^{AYEZ L'AIR CALME} detections!
 - ◆ Multi-messenger key ingredient for successful science
 - ◆ Prepare the future: 2.5 and 3rd generations...
- LISA: get ready for L2 selection
 - Relying on a successful LISA-Pathfinder
- Keep an eye on pulsar timing arrays!

2009-2010 LOOCUP Program

Virgo : évolution de l'horizon CBC

