Combination of results on the Higgs in ATLAS

Bruno Mansoulié (CEA-IRFU-Saclay)

On behalf of the ATLAS collaboration
• m_H from $m(\gamma\gamma)$ and $m(4$ leptons$)$

• Signal strength with respect to SM : global (μ), per channel (μ_i)

• Production modes: Vector Boson Fusion (+ VH) / gluon fusion (+ tt)

• Higgs couplings

ATLAS-CONF-2013-014
Statistical method

- All results from profiled likelihood method

\[\Lambda(\mu) = \frac{L(\mu, \hat{\theta}(\mu))}{L(\hat{\mu}, \hat{\theta})} \]

- \(\mu \) : parameter(s) of interest
- \(\theta \) : nuisance parameters

- Global likelihood maximum: \(\mu \) and \(\theta \) adjusted for max L

- \(L(\hat{\mu}, \hat{\theta}(\mu)) \) tested \(\mu \) point: \(\theta \) adjusted for max L at this \(\mu \) point

- \(-2 \ln \Lambda(\mu) \) follows \(\chi^2 \) distribution with n d.o.f. \((\mu_1,...,n) \Rightarrow P(\chi^2 > x)\)...

- Nuisance parameters \(\theta \) prob.dist.functions: Gauss, LogNormal, Poisson ...

- Also explored: cases with a « rectangular » pdf for some systematic uncertainties
Mass systematic uncertainties: 4 leptons and γγ

- **4 leptons**
 - Dominated by 4 muons (best resolution, less background)
 - Muon momentum-scale uncertainty: 0.2% (from Z, J/ψ → µµ)
 - electron E-scale => see below

- **γγ**
 - Per category systematic uncertainties:
 - method ~ 0.3 % : *(mainly from Z → ee MC/data)*
 - material in front of calorimeter: ~ 0.3%, up to 0.7%
 - relative calibration presampler/calorimeter: ~ 0.1%

 In each of the above: extrapolation in $E \oplus$ transfer from e to γ

 - Additional (global) syst uncertainties:
 - E1/E2, linearity, lateral leakage, conversion fraction … 0.32%

- Global mass systematic uncertainty: 0.55% = 0.7 GeV
Mass measurement from $\gamma\gamma$ and 4 leptons

- $\mu_{\gamma\gamma}$ and μ_{4l} treated as independent nuisance parameters

- m_H : parameter of interest

- **Full data sample:**
 2011 (4.8 fb$^{-1}$) + 2012 (20.7 fb$^{-1}$)

- **Result:** $m_H = 125.5 \pm 0.2$ (stat) $^{+0.5}_{-0.6}$ (sys) GeV

 Council Dec 2012 : $m_H = 125.2 \pm 0.3$ (stat) ± 0.6 (sys) GeV $(4.7$ fb$^{-1} + 13$ fb$^{-1})$
Mass difference: $m_{\gamma\gamma} / m_{4l}$

- Parameters of interest: $m_{\gamma\gamma}$, m_{4l} (independent)
- Small correlation due to the common EM-scale in $\gamma\gamma$ and ee in 4 leptons
 - in 4 leptons: $m_{4e} = 126.2 \pm 1.5$, $m_{4\mu} = 123.8 \pm 0.8$
 - pulls EM-scale down by 0.3 %
 - $m_{\gamma\gamma}$ here 0.4 GeV lower than single channel value

Quantify consistency:
- parameter of interest: $\Delta m_H = m_{gg} - m_{4l}$

\[\Rightarrow \Delta m_H = 2.3^{+0.6}_{-0.7} \text{ (stat)} \pm 0.6 \text{ (sys)} \text{ GeV} \]

2.4 σ from $\Delta m_H = 0$ (p = 1.5%)

Also: set E-scale, e/γ pdf’s to rectangular $[\pm 1 \sigma]$

(material models, calo samplings calibration...)

\[\Rightarrow \ p = 8\% \]
• Parameter of interest: μ (global)

$\Rightarrow \mu = 1.43 \pm 0.16 \text{ (stat)} \pm 0.14 \text{ (sys)}$

$\mu_\text{Council Dec 2012} = 1.35 \pm 0.19 \text{ (stat)} \pm 0.15 \text{ (sys)}$

• Consistency tests
 – global μ with SM: 3%
 • 11% with rectangular QCD scale and parton dist functions
 – $5\mu_i$ with SM: 8%
 – $5\mu_i$ with 1.43: 32%

• μ, m_H contours
 – $\gamma\gamma$
 – $4l$
 – combined

Bruno Mansoulié (IRFU-CEA), Moriond-EW, March 2013

at $m_H = 125.5$

$[124.5-126.5]: \mu \pm 4\%$
Higgs production modes

- Through t coupling
 - fermion masses...

- Through W/Z coupling
 - W/Z masses...
 - unitarity of SM

Can be tested for all modes with VBF sensitivity

Here: $\gamma\gamma$, $ZZ \ (4.8 + 21 \text{ fb}^{-1})$, $\tau\tau \ (4.6 + 13 \text{ fb}^{-1})$
Production modes: VBF+VH / ggF +ttH

- \(\mu_{\text{VBF+VH}} \) versus \(\mu_{\text{ggF+ttH}} \)

includes Branching Ratio

(which might be different in each case)

- Ratio independent of B.R.: can be combined

\[\Rightarrow \frac{\mu_{\text{VBF+VH}}}{\mu_{\text{ggF+ttH}}} = 0.9^{+0.7}_{-0.4} \]
Higgs couplings

• For each observed final state, production and decay involve several couplings

• Best example: $\gamma\gamma$

 – Production

 \[\sim \kappa_g^2 \left(\kappa_t, \kappa_b, m_H \right) \]

 \[+ \sim \kappa_W^2 \]

 – Decay

 \[\text{Decay width : } \sim (\kappa_W - 0.2 \kappa_t)^2 \quad [\text{note: interference}] \]

• Need consistent parametrization => LHC-XS-WG

• Ideally: use all production and decay modes to measure all κ’s

• Reality: some modes are statistically limited, or even invisible (κ_c, κ_μ...?)

 => Group some κ’s in order to test salient/important features

ATLAS-CONF-2012-127
Bruno Mansoulié (IRFU-CEA), Moriond-EW, March 2013
Fermion versus Vector couplings

- Group couplings: $\kappa_V = \kappa_W = \kappa_Z$; $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau$

- Assume:
 - $gg \rightarrow H$ and $H \rightarrow \gamma\gamma$ only through SM particles
 - only SM particles contribute to decay (relaxing this assumption => backup)

 sensitivity to relative sign:
 - only from interference term in $H \rightarrow \gamma\gamma$
 - compatibility with SM: 21%

- With these data, sensitivity to κ_F is mostly through top in loops. Will be better with $\tau\tau$, bb…

Bruno Mansoulié (IRFU-CEA), Moriond-EW, March 2013
W and Z couplings ('custodial symmetry')

- group $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau$
- un-group κ_W, κ_Z

- test $\lambda_{WZ} = \kappa_W / \kappa_Z$

$\Rightarrow \lambda_{WZ} = 1.07^{+0.35}_{-0.27}$

Direct contribution: WW and ZZ
Indirect: $\gamma\gamma$ (through W loop)
Contributions from non-SM particles

• Assume all couplings to SM particles $\kappa_i = 1$

• Introduce effective κ_g, κ_γ, independent (allow additional contributions to loops)

• Assume no contributions to the total width in undetected modes (relaxing this assumption => backup)

$$\kappa_g = 1.1^{+0.2}_{-0.3}; \kappa_\gamma = 1.2^{+0.3}_{-0.2}$$

SM hypothesis: 18%

Bruno Mansoulié (IRFU-CEA), Moriond-EW, March 2013
Conclusion: ATLAS-Higgs status today

- New high resolution channels $\gamma\gamma$ and 4 leptons (full 2011 + 2012 data)

 $m_H = 125.5 \pm 0.2$ (stat) $^{+0.5}_{-0.6}$ (sys) GeV

 $\mu = 1.43 \pm 0.16$ (stat) ± 0.14 (sys)

- Signal strengths

 \Rightarrow \Rightarrow

- Production mode (from $\gamma\gamma$, ZZ, $\tau\tau$): $\mu_{VBF+VH}/\mu_{ggF+ttH} = 0.9\quad^{+0.7}_{-0.4}$

- Higgs couplings (partial dataset)

 Compatible with SM hypothesis.

- $\text{BR}(H\to\text{inv.}) < 65\%$ (95\% C.L.)

Bruno Mansoulié (IRFU-CEA), Moriond-EW, March 2013
The birth of a particle

- A big thank you to all my ATLAS colleagues since the beginning…

Bruno Mansoulié (IRFU-CEA), Moriond-EW, March 2013
• Most recent documentation

- $\gamma\gamma$: ATLAS-CONF-2013-012
- WW, $\tau\tau$, bb: ATLAS-CONF-2012-162
- Previous combination: ATLAS-CONF-2012-170
- Couplings: ATLAS-CONF-2012-127
Per-channel masses in $H \to 4l$

ATLAS Preliminary $H \to ZZ^{(*)} \to 4l$

- $\sqrt{s} = 7$ TeV: $\int L dt = 4.6$ fb$^{-1}$
- $\sqrt{s} = 8$ TeV: $\int L dt = 20.7$ fb$^{-1}$

$\hat{m}_H = 124.3 \pm 0.6^{(\text{stat})} \pm 0.5^{(\text{sys})}$ GeV

Bruno Mansoulié (IRFU-CEA), Moriond-EW, March 2013
μ_i dependence on assumed m_H

$m_H = 124.5$

$m_H = 125.5$

$m_H = 126.5$
p_0 plots

- Full 2011 and 2012 statistics:
 - Previous combination
 $\gamma\gamma : 6.1 \sigma \oplus ZZ : 4.1 \sigma \Rightarrow$ global : 7.0σ

 Present combination
 $\gamma\gamma : 7.4 \sigma \oplus ZZ : 6.6 \sigma \Rightarrow$ global : $? (> 9 \sigma)$

Bruno Mansoulié (IRFU-CEA), Moriond-EW, March 2013
Fermion versus Vector couplings (2)

- Group couplings: $\kappa_V = \kappa_W = \kappa_Z$; $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau$
 - Assume: $gg \to H$ and $H \to \gamma\gamma$ only through SM particles

- No assumption on total width:

 $\lambda_{FV} = \kappa_F / \kappa_V$; $\kappa_{VV} = \kappa_V \kappa_V / \kappa_H$
Contributions from non-SM particles (2)

- Assume all couplings to SM particles $\kappa_i = 1$
- Introduce effective κ_g, κ_γ, independent (allow additional contributions to loops)

- Allowing possible $\text{BR}_{\text{inv, undet}}$ to undetected modes

$\text{BR}_{\text{inv, undet}} < 0.68 \ (68\% \ CL)$
$\text{BR}_{\text{inv, undet}} < 0.84 \ (95\% \ CL)$

SM hypothesis : 35%