Precision Measurement of the Beryllium-7 v's with the Borexino Detector First results of the Annual Flux Modulation

Szymon Manecki, VirginiaTech on behalf of the Borexino Collaboration

Borexino Results

- Noriond 12 pep & CNO limit : Phys. Rev. Lett. 108 (2012) 051302.
 - ⁸B > 3 MeV: Phys. Rev. D 82 (2010) 033006.
 - Geo-neutrinos: Phys. Lett. B 687 (2010) 299-304.
- New Seo-results icoming soon! ⁷Be @ 17%: C. Arpesella at al. (Borexino collaboration). ۲
 - ⁷Be @ 10%: Phys. Rev. Lett. 101 (2008) 091302. •
 - ⁷Be @ 5%: Phys. Rev. Lett. 107 (2011) 141302. •
 - ⁷Be A_{dn}: Physics Letters B 707 (2012) 22-26.
 - ⁷Be Annual Flux Modulation (in preparation). ٠

Borexino Results

- pep & CNO limit : Phys. Rev. Lett. 108 (2012) 051302.
 - ⁸B > 3 MeV: Phys. Rev. D 82 (2010) 033006.
 - Geo-neutrinos: Phys. Lett. B 687 (2010) 299-3
- ²Be Flux Nieasurement ⁷Be @ 17%: C. Arpesella at al. (Borexino collaboration).
 - ⁷Be @ 10%: Phys. Rev. Lett. 101 (2008) 091302.
 - ⁷Be @ 5%: Phys. Rev. Lett. 107 (2011) 141302.
 - ⁷Be A_{dn}: Physics Letters B 707 (2012) 22-26.
 - ⁷Be Annual Flux Modulation (in preparation). ٠

Solar Physics

Energy production in the Sun:

Solar Physics

Solar-v spectrum is a combination of continuous and monochromatic lines, depending on whether it is a two- or three- body process, for instance:

 $p + p \rightarrow {}^{2}H + e^{+} + v_{e}$

 $^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li} + v_{o}$

- Continunous
- Monochromatic

Prediction from SSM (2008):

- pp ±0.5%
- ⁷Be ±5.8%
- pep ±1.1%
- ⁸B ±11.3% (!)
- hep ±15.5% (!)
- CNO overall ±15.5 to 20.0%
 (Fluxes strongly dependent on the metallicity models of the Sun.)

Motivation

Solar Physics

- Solar abundance problem: Neither of the models give the answer.
- Verification of the Luminosity constraint (L_y/L_y = 1)
- Solar origin of neutrinos confirmed with the annual modulation check

Solar-v Physics

- Study of the v_e survival probability: In high-E, dominated by MSW eff.
- Recombination in Earth probed with the Day-Night asymmetry study
- Vacuum vs MSW oscillation verified with the annual modulation pattern

Borexino Collaboration

Borexino Location

LNGS

The Borexino experiment is located in the national park of Gran-Sasso as part of the national research facility.

Natural coverage by the Gran-Sasso mountains provides the required shielding from the Cosimc rays.

Borexino Detector

 \odot 3600 m.w.e of rock (μ)

- \odot Cherenkov water detector
- Inner PMTs (Rn emanation)
- \odot Quenched scintillator
- \circ Active scintillator
- \odot Fiducial mass (γ)

 \circ Fast neutrons

<u>Background</u>	<u>Typical abundance</u>	<u>Goal</u>	<u>Measured</u>
²³⁸ U	2 x10 ⁻⁵ (dust) g/g	10 ⁻¹⁶ g/g	(1.6 <u>+</u> 0.1) x 10 ⁻¹⁷ g/g
²³² Th	2 x 10⁻⁵ (dust) g/g	10 ⁻¹⁶ g/g	(5 <u>+</u> 1) x 10 ⁻¹⁸ g/g

arXiv:1207.4816v1

Radio-purity

Constraints

- The purity of the scintillator must be preserved (U/Th at 10⁻¹⁷g/g)
- No external light leakage allowed
- Work in a pressurized environment
- No physical contact with the 125µm thin nylon vessel

Radio-purity

Constraints

- The purity of the scintillator must be preserved (U/Th at 10⁻¹⁷g/g)
- No external light leakage allowed
- Work in a pressurized environment
- No physical contact with the 125µm thin nylon vessel

Results

Туре	Туре ү				β		α	n						
Src.	⁵⁷ Co	¹³⁹ Ce	²⁰³ Hg	⁸⁵ Sr	⁵⁴ Mn	⁶⁵ Zn	⁶⁰ Co	⁴⁰ K	¹⁴ C	²¹⁴ Bi	²¹⁴ Po	n-p	n-12C	n-Fe
MeV	0.122	0.165	0.279	0.514	0.834	1.1	1.1, 1.3	1.4	0.15	3.2	7.69 (0.84)	2.23	4.94	~7.5

Systematics					
Livetime	0.1%	0.04%			
Scintillator p	0.2%	0.05%			
Event Selection Loss	0.3%	0.1%			
Position Reconstruction	6.0%	+1.3%/ -0.5%			
Energy Scale	6.0%	2.7%			
TOTAL	8.5%	+3.6%/ -3.4%			

Energy and Position resolution at 1 MeV: 5% [energy]; ~10-15cm [position]

Borexino Signal

Borexino Signal

- \bullet PMTs receive scintillation light from scattered electrons and $\,\gamma\,$ particles
- DAQ triggers when 25 PMTs receive signal within 60ns

<u>PMT time-of-flight</u> distribution used for position reconstruction

Number of hits, or charge used for energy determination

Light yield: (500±12) p.e./MeV

Beryllium-7 Flux Measurement

⁷Be Flux

Selection of events

Major cuts :

 Muons, and fast cosmogenics,

Electronics noise

- 2) Fiducial Volume 1/3 active mass
- 3) α- subtraction(Gattiparameter)

⁷Be Flux

Spectral Fit Results

Beryllium-7 Day-Night Asymmetry

Day-Night Asymmetry

Searching for increased count rate during the day

Day-Night Asymmetry

Searching for increased count rate during the day

Beryllium-7 Annual Modulation

Annual Modulation

Figure from: PRD, Vol. 60, 093011

Before Borexino

2 NAL

FEB

MAR APR MAY

JUL JUL AUG SEP OCT NOV

PRD, Vol. 69, 011104(R)

PRD, Vol. 72, 052010

Borexino Spectrum

No spectral shape for the Signal/Background identification

Borexino Data

Building up ²¹⁰Bi:

- Definite origin remains unknown (possible release from the IV),
- Spectral shape and count-rate almost identical with ⁷Be-v,
- Impossible to eliminate with any of the software cuts,
- Reduced during the purification.

IV dependent Ext_γ:

- Choice of a dynamic Fiducial Vol. affected by the Ext_ Gamma's,
- Spatial cut defined using Ext_ source calibration data.

Phase I Sensitivity

Lomb-Scargle

$$SPD() = \frac{1}{2\sigma^2} \left\{ \frac{\left[\sum_j \left(X_j - \bar{X}\right) \cos \omega(t_j - \tau)\right]^2}{\sum_j \cos^2 \omega(t_j - \tau)} + \frac{\left[\sum_j \left(X_j - \bar{X}\right) \sin \omega(t_j - \tau)\right]^2}{\sum_j \sin^2 \omega(t_j - \tau)} \right\};$$
$$\sigma^2 = \frac{1}{N-1} \sum_{j=1}^N \left(X_j - \bar{X}\right)^2; \ \tan 2\omega\tau = \frac{\sum_j \sin 2\omega t_j}{\sum_j \cos 2\omega t_j}$$

cos zwi j=1

Lomb-Scargle MC Frequency White Nosie 450 Be-7 Signal 400 350 Monte-Carlo 300 250 200 150 100 50 0 2 10 12 14 Lomb-Scargle SPD

Monte-Carlo simulation of the solar flux annual modulation:

- Signal and backgrounds assumed as in the data
- 10⁴ simulations, for each calculate LS SPD at 1 year and plot Signal (Blue) & Background (Red)

Phase I Results

Annual amplitude modulation results with Borexino:

- Lomb-Scargle:

```
T = 0.979 y
```

- Fit:

ε = 0.0398±0.0102(within 2σ) T= 1.01±0.07 y

Impact of the Results

• Clear agreement with the MSW-LMA solution (A_{ND} and Flux)

- From the annual flux modulation study, no indication of anomalous oscillation pattern (in agreement with the MSW-LMA scenario)
- Within error bars, both High- and Low-Metallicity Models are in agreement with the Borexino data.

Near Future

- Entering Phase II with remarkably low internal backgrounds
 - ⁸⁵Kr Preliminary cnt/bin 6000 0000 < 8.8 cpd / 100 t 2007-2010: 31.2 ± 5 • ²¹⁰Bi 3900 16 ± 4 cpd / 100 t 2007-2010: 41.0 ± 2.8 3800 • 238 3700 $< 9.7 \ 10^{-19} \ g/g$ • ²³²Th 3600 01/12 03/1205/12 11/1108/12 10/12 $< 2.9 \ 10^{-18} \ g/g$ 07/12mm/yy
- Preparations for sterile neutrino search are advancing (R&D)

⁵¹Cr (external) neutrino source: 5-10 MCi

- During Phase 2
- ¹⁴⁴Ce (internal) anti-neutrino source: 50-100 kCi
- After the solar neutrino physics

La Fine

Astroparticle and Cosmology Laboratory – Paris, France INFN Laboratori Nazionali del Gran Sasso – Assergi, Italy INFN e Dipartimento di Fisica dell'Università – Genova, Italy INFN e Dipartimento di Fisica dell'Università– Milano, Italy INFN e Dipartimento di Chimica dell'Università – Perugia, Italy Institute for Nuclear Research – Gatchina, Russia Institute of Physics, Jagellonian University – Cracow, Poland Joint Institute for Nuclear Research – Dubna, Russia Kurchatov Institute – Moscow, Russia Max-Planck Institute fuer Kernphysik – Heidelberg, Germany Princeton University – Princeton, NJ, USA Technische Universität – Muenchen, Germany University of Massachusetts at Amherst, MA, USA University of Moscow – Moscow, Russia Virginia Tech – Blacksburg, VA, USA

Backup

pep and CNO

pep and CNO detection

More difficult than ⁷Be neutrino detection Low signal: few events/day/100tons Dominant background: cosmogenic β + emitter ¹¹C 27cpd/100tons \rightarrow signal/background ~ 0.1

Need novel techniques to suppress ¹¹C background: Three Fold Coincidence e⁺/e⁻ Pulse Shape Discrimination

A Cabrdon-11 Veto

 $\Delta t \sim 30$ min:

μ

 $\Delta t \sim 250 \ \mu s$: n + p $\rightarrow d^* \rightarrow d + \gamma (2.2 \ MeV)$

 $^{11}C \rightarrow ^{11}B + e + + v (+ 0.96 \text{ MeV})$

.

A Cabrdon-11 Veto

 μ +¹²C \rightarrow μ +¹¹C + n

 $\Delta t \sim 30$ min:

μ

 $n + p \rightarrow d^* \rightarrow d + \gamma$ (2.2 MeV)

 $^{11}C \rightarrow ^{11}B + e + + v (+ 0.96 \text{ MeV})$

 $\Delta t \sim 250 \ \mu s$:

A Cabrdon-11 Veto

 $\mu + {}^{12}C \rightarrow \mu + {}^{11}C + n$

μ

 $\Delta t \sim 250 \ \mu s$: n + p $\rightarrow d^* \rightarrow d + \gamma$ (2.2 MeV)

 $\Delta t \sim 30$ min: ¹¹C →¹¹B + e+ + v (+ 0.96 MeV)

A Cabrdon-11 Veto

e+/e- Discrimination

A Cabrdon-11 Veto

Positrons form ortho-positronium in ~ 50% of cases (in PC)

- Scintillation signal delayed by ~ 3 ns
- Pulse shape is different
- Parameters measured in dedicated experiment

External Backgrounds

Radioactive decays in peripheral structure: ²⁰⁸Tl from PMTs...

- Spatial distribution external bkg \rightarrow NON homogeneous
- Spatial distribution internal bkg and neutrinos \rightarrow homogeneous
- Spatial distribution from Monte Carlo simulation and external calibration source (²²⁸Th)
- Fiducial Volume: minimize γ-rays without sacrifice too many events

Final fit done with multivariate likelihood fit:

- External background identified by means of its spatial distribution
- ¹¹C by means of BDT variable
- Energy used to disentangle other β backgrounds (²¹⁰Bi in particular)

First detection of pep

Rate: $3.1 \pm 0.6_{stat} \pm 0.3_{sys}$ cpd/100 t

No oscillations excluded at 97% c.l.

Absence of pep solar v excluded at 98%

Assuming MSW-LMA:

 $\Phi_{\rm pep}$ = 1.6 ± 0.3 108 cm⁻² s⁻¹

CNO limit obtained assuming pep @ SSM

CNO rate < 7.1 cpd/100 t (95% c.l.)

Boron-8

⁸B v with 3 MeV energy threshold in Borexino

Important to probe the oscillation scenario

Removal of muons and events after muons within 2ms (neutrons, afterpulses, short lived isotopes, electronics artefacts)
Identify ¹⁰C via 3 fold coinc. (muonneutron-10C decay)

- ¹¹Be statistically subtracted

Boron-8

⁸B v with 3 MeV energy threshold in Borexino
Important to probe the oscillation scenario

	3.0–16.3 MeV	5.0–16.3 MeV
Rate [c/d/100 tons]	$0.22 \pm 0.04 \pm 0.01$	$0.13 \pm 0.02 \pm 0.01$
$\Phi_{\rm exp}^{\rm ES}$ [10 ⁶ cm ⁻² s ⁻¹]	$2.4{\pm}0.4{\pm}0.1$	$2.7\pm0.4\pm0.2$
$\Phi_{exp}^{ES}/\Phi_{th}^{ES}$	$0.88 {\pm} 0.19$	1.08 ± 0.23

⁸B solar neutrinos: electron recoil spectrum after the background subtraction and comparison with the models

Results in agreement with LMA-MSW and solar models

Geo-Neutrinos

Geology

Crust: the uppermost part

OCEANIC CRUST

CONTINENTAL CRUST

Geo-Neutrinos

Global Status

KamLand in Kamioka OCEANIC CRUST

- Reactor antineutrinos;
- 1000 tons;
- S(reactors)/S(geo) ~ 6.7 (2010)
 (are the reactors in Japan still OFF ?)

Borexino in Gran Sasso CONTINENTAL CRUST

- Solar neutrinos
- 280 tons;
- S(reactors)/S(geo) ~ 0.3
- DAQ started in 2007;

Geo-Neutrinos

Detection

$\overline{v_e} + p \rightarrow n + e^+$

Energy threshold for antineutrino: 1.8 MeV Excess energy carried away by positron

Coincidence Tagging:

Prompt Event: Scintillation from positron KE and annihilation Delayed Event: Neutron Capture on hydrogen ($\tau \sim 250 \ \mu s$)

Geo-Neutrinos

Inverse Beta Decay

Positron annihilation (> 1.02 MeV)

Neutron Capture (2.2 MeV)

Geo-Neutrinos

Inverse Beta Decay

Positron annihilation (> 1.02 MeV)

Neutron Capture (2.2 MeV)

Geo-Neutrinos

Inverse Beta Decay

Positron annihilation (> 1.02 MeV)

Neutron Capture (2.2 MeV)

Geo-Neutrinos

Use spatial and time correlation between events to effectively reduce background

Coincidence allows us to use entire scintillating volume (~ 278 tons) for geoneutrino search

Signal + Background

- Reactor antineutrinos
- ${}^{13}C(\alpha, n){}^{16}O$ reactions
- ⁹Li / ⁸He cosmogenic events

• Fast neutrons

Neutrino Speed

arXiv:1207.6860v1

<E> = 17 GeV muon neutrino 730 km – CERN to LNGS \vee mass < 2 ev/c² $\gamma > 10^{11}$ $\Delta t = 0.8 \pm 0.7_{stat} \pm 2.9_{svs}$

Description	Error (ns)
Time-Link Calibration (GPS)	1.1
Borexino electronics delays	0.5
Delays at CERN	2.2
Light propagation in BX detector	1.0
Electronics resolution	0.5
Event selection stability	1.0
Geodesy measurement	0.1
Total systematic error	2.9