Recent results from GERDA

Paolo Zavarise

INFN-LNGS, GERDA Collaboration

Rencontres de Moriond La Thuile - March 5th, 2013

OUTLINE:

- GERDA motivations
- GERDA design
- GERDA status

GERDA motivations

The GERmanium Detector Array experiment is an ultra-low background experiment designed to search for $^{76}{\rm Ge}~0\nu\beta\beta$ decay.

 $\begin{array}{c} 2\nu\beta\beta\\ (Z,A) \to (Z+2,A)+2e^-+2\overline{\nu}_e\\ \Delta L = 0 \Longrightarrow \begin{array}{c} \operatorname{Predicted} \ \text{by s.m.}\\ Observed. \end{array}$

Light Majorana neutrino exchange

$$m_{\beta\beta} \equiv |\sum_{i=1}^{3} U_{ei}^2 m_i|$$

 \equiv effective Majorana mass

information on the absolute mass scale!

Schechter-Valle: $0\nu\beta\beta \Longrightarrow$ Majorana ν

A=76 33^{As} β 32^{Ge} β 34^{Se} 34^{Se} $Q_{\beta\beta} = 2039 \text{ keV}$

Part of Heidelberg-Moscow Collaboration claimed evidence for $0\nu\beta\beta$ observation of ⁷⁶Ge

 $\begin{array}{l} {\cal T}_{1/2}^{0\nu}=1.19(0.69-4.18)\\ \times 10^{25} \mbox{ yr (} 3\sigma \mbox{ range)} \end{array}$ Phys. Lett. B 586, 198 (2004)

 $\begin{array}{l} {\cal T}_{1/2}^{0\nu}=2.23^{+0.44}_{-0.31}\times 10^{25} \mbox{ yr} \\ {\sf Mod.Phys.Lett.A21:1547-} \\ 1566,2006) \end{array}$

GERDA first goal: check the HdM claim

⁷⁶Ge $0\nu\beta\beta$ experiments

HPGe detectors technology (ionization)

Ge as source and detector in a low background environment.

 76 Ge natural abundance: 7% \implies Enrichment \sim 86% 76 Ge

Advantages

- 4π solid angle coverage
- Industrial techniques and facilities available to enrich the material
- High purity
- Excellent energy resolution

Disadvantages

- Low $Q_{\beta\beta}$ value (lower than ²⁰⁸Tl 2614 keV) \implies background
- Enrichment is expensive (but convenient)

Measured quantity for $\beta\beta$ events: sum of the electrons kinetic energies

 $2\nu\beta\beta$: not a constant (a part of the released energy is carried away by neutrinos) $0\nu\beta\beta$: constant!

Sensitivity

 $\begin{array}{l} T_{1/2}^{0\nu}(n\sigma CL) \sim \frac{\ln 2}{A} \frac{M_A}{A} \alpha \epsilon \sqrt{\frac{M \cdot t}{B \cdot \Delta E}} \\ (\alpha \text{ isotopic abundance, } \epsilon \text{ detector efficiency,} \\ M \text{ detector mass, } \Delta E \text{ energy resolution,} \\ B \text{ background index, } t \text{ measuring time,} \\ A \text{ isotope molar mass)} \end{array}$

Low background \implies better sensitivity!

GERDA @ LNGS

The GERDA experiment is hosted in the Hall A of the Gran Sasso Laboratory (INFN)

1400 m of rock 3800 m.w.e. Suppression of $\mu\text{-flux}{>}10^6$

The GERDA setup

Water tank

 $\emptyset = 10 \text{ m}$ h = 8.9 m $V \text{ water} = 590 \text{ m}^3$ The water tank acts as an active Cherenkov veto

Cryostat $\emptyset = 4 \text{ m}$ H= 5.88 m Filled by LAr

 $LAr \\ Volume \sim 64 \ m^3 \\ T = 88.8 \ K$

Naked detectors in LAr!

 $LAr \rightarrow Passive shielding, Cooling, Active veto detecting scintillation light (Phase II)$ Detectors are organized in strings - Low mass holdersThe current lock system supports 2 arms = 3+1 strings of detectors.

Events identification

How to understand the nature (signal or background?) of events around Q_{etaeta} ?

- First step: filter events in coincidence with a signal
 - from muon-veto
 - from liquid Argon instrumentation (Phase II)
- Second step: discriminate Single & MultiSite Events

Second step approaches:

- Anti-coincidence of detectors
- Pulse shape analysis

GERDA detectors: coaxials

8 enriched detectors in the 3-string arm.

2 detectors are not working due to high leakage current. Total mass of working enriched coaxial detectors:

 $\sim 14.6~{\rm kg}$

Coaxial enriched detectors come from HdM and IGEX experiments!

Strings inside mini-shrouds (thin copper shields)

Field-Free environment in the cryostat

GERDA detectors: BEGes

New enriched detectors have been built.

BEGe detectors from Canberra have been chosen because of good PSD capabilities JINST 4 P10007

Design for a BEGe string

PSD based on A/E ratio

5 enriched bege in the 1-string arm (total mass: 3.6 kg)

Phase I started on 11.2011!

Exposure by end 2012: 15.16 kg · yr (enr) 4.69 kg · yr (nat)

Average duty cycle: 81%

Calibrations with ²²⁸Th sources - Enriched coaxial detectors

Mass weighted average for FWHM at $Q_{etaeta}\simeq$ 4.5 keV

Calibrations with ²²⁸Th sources - BEGe detectors

Mass weighted average for FWHM at $Q_{etaeta}\simeq$ 3.0 keV

Since January 2012, we are not analyzing the data in the blind region $Q_{\beta\beta} \pm 20$ keV, to be unbiased in the background extimation. Unblinding: June/July 2013

 39 Ar activity in natural argon: (1.01 \pm 0.08) Bq/kg (Benetti et al., NIM A547 (2007) 83) Fully compatible with our data. Not a background at $Q_{\beta\beta}$ 42 Ar activity in natural argon: Upper limit of 41 μ Bq/kg (90% C.L.) (Ashitkov et al., arXiv:nucl-ex:0309001) Count rate at 1525 keV 2x than expected

Binned maximum likelihood

Fit range: 600-1800 keV Exposure: 5.04 kg·yr

Best fit: 2νββ 80% ⁴²K 14% ²¹⁴Bi 4% ⁴⁰K 2%

Integrating over all the nuisance parameters: $T_{1/2}^{2\nu} = (1.84^{+0.09}_{-0.08} \ ^{+0.11}_{-0.08} \ ^{yst}) \times 10^{21}$ yr

The GERDA Collaboration J.Phys.G 40 (2013) 035110

⁷⁶Ge $2\nu\beta\beta$ half-life: previous experiments

- Uncertainty comparable to best previous experiment (even with lower exposure)
- Good agreement with the HdM re-analysis HdM-K: Nucl. Instr. Meth. A 513, 596 (2003) HdM-B: Phys. Part. Nucl. Lett 2, 77 (2005)

Background index around $Q_{\beta\beta}$

Background index ($Q_{\beta\beta} \pm 100$ keV minus blind region \rightarrow window size: 160 keV) without pulse shape discrimination

0.022^{+0.003}_{-0.003} counts/(keV·kg·yr) for enriched coaxial detectors (0.017^{+0.003}_{-0.003} counts/(keV·kg·yr) excluding 1.30 kg·yr of higher background due to operations for the BEGe string insertion) 0.041^{+0.015}_{-0.012} counts/(keV·kg·yr) for enriched bege detectors 0.051^{+0.009}_{-0.008} counts/(keV·kg·yr) for natural detectors

Most likely from a combination of Compton of γ 's from Th/U chains (^{208}TI and ^{214}Bi), degraded β from ^{42}K , degraded α from ^{210}Po .

Enriched detectors (phase I)

B.I. (without pulse shape)

HdM : 0.11 counts/(keV \cdot kg \cdot yr) IGEX : 0.17 counts/(keV \cdot kg \cdot yr)

Phase I exposure goal: 20 kg yr (June/July) Expected sensitivity: $\sim 2 \times 10^{25}$ years @ 90% C.L. (without p.s.)

Pulse shape for coaxial detectors \rightarrow Work in progress

Phase II - Liquid argon instrumentation

Phase II goals: exposure 100 kg yr (20 kg of new GE detectors (BEGe)), LAr instrumentation, B.I. \sim 0.001 counts/(keV·kg·yr) Start in 2013 Expected sensitivity \sim 15 \times 10²⁵ yr @ 90% C.L.

Several options are being investigated for the read-out of the LAr scintillation light.

A PMT-based approach is running in LArGe (a smaller GERDA facility).

Combining the superior PSD of BEGes (Phase II detectors) with the LAr veto, we measured a suppression factor $\sim 0.5\times 10^4$ around $Q_{\beta\beta}$ for a 228 Th calibration source.

Phase III: Worldwide collaboration?

The collaboration

 \sim 112 physicists, 18 institutions, 6 countries

Conclusions

- Phase I data taking started on 11.2011
- Data acquisition: ongoing. Current duty cycle: 81%
- Detectors are stable except for two coaxials which present LC problems
- End 2012 enriched exposure: 15.16 kg·yr
- Background is much lower than in previous experiments (HdM & IGEX): GERDA concept validated
- Fit of $2\nu\beta\beta$ spectrum with a model of $2\nu\beta\beta$, ⁴²Ar, ⁴⁰K and ²¹⁴Bi in the 600-1800 keV energy window
- Phase I completition: June/July 2013
- Phase II is already funded. R&D and testing of prototypes is ongoing. Key feature: detection of LAr scintillation light.

The GERDA experiment for the search of $0\nu\beta\beta$ decay in ⁷⁶Ge arXiv:1212.4067 [physics.ins-det] (Eur. J. Phys C accepted)

Thank you for your attention

Backup slides

The importance of neutrinoless double beta decay

Oscillations \implies Massive neutrinos $\implies \nu_{\alpha} = \sum_{i=1}^{3} U_{\alpha i} v_{i}$

 $\begin{array}{ll} \nu_{\alpha} & = {\rm flavor\ eigenstate\ } \nu_{e}, \nu_{\mu}, \nu_{\tau} \\ U & = 3x3 \ {\rm PMNS\ (Pontecorvo-Maki-Nakagawa-Sakata)\ mixing\ matrix} \end{array}$

 v_i = mass eigenstate i

Neutrinos are massive \implies new open problems

- Neutrino nature (Majorana or Dirac particle)
- Absolute mass scale

Some answers may come from the observation of Neutrinoless Double Beta ($0\nu\beta\beta$) decay

Schechter Valle theorem: $0\nu\beta\beta \Longrightarrow$ Majorana ν

- Phase I (~ 20 kg·yr) Ongoing Detectors from HdM & IGEX + BEGes B.I. ~ 0.02 counts/(keV·kg·yr) (without p.s.) Target sensitivity: 2 × 10²⁵ years @ 90% C.L.
- Phase II (100 kg·yr) 2013 20 kg of new GE detectors (BEGe) LAr instrumentation B.I. ~ 0.001 counts/(keV·kg·yr)
- Phase III Worldwide collaboration?

GERDA Software Framework

GELATIO: a general framework for modular analysis of high-purity Ge detector signals JINST $\bf{6}$ (2011) P08013

- Written in C++ / ROOT
- Managing different data sources in a common way
- Modular design
- Signal processing features
- Fully integrated with a database

🗴 Gelatio-GUI _ 🗆 ×	K Gelatio-GUI _ = ×		
Eile View Help	Eile View Help		
demoDataSetini	demoDataSetini		
Files Event viewer Modules Summary Event analyzer	Files Event viewer Modules Summary Event analyzer		
Close	Close		
Info View	Info Analysis		
Event 0	Event 8 🖉		
Info Waveforms Rows: 3 + Columns: 1 + TopLeftChannel: 0 +	Channel. 0 🖉		
	Tak Udt Tak Udt Tak Udt Tak Udt Tak Udt GERARENANDAG Tak Udt Tak Udt GERARENANDAG Tak Udt Tak		
Event viewer	Event analyzer		

The graphical user interface

GERDA and LArGe

GERDA

LArGe

Warning: the scale is not the same!

Spectrum of muon-induced events in Germanium Exposure=2.09 kg·y, 3 ^{nat}Ge detectors Black=data, Blue=Monte Carlo ... excellent agreement!

Estimate of muon veto efficiency for events which cause a signal in Ge: $\varepsilon=98.7\%$

Estimate of muon-induced background at $Q_{\beta\beta}$: $B_{\mu} < 2.0 \times 10^{-4} \text{counts}/(\text{kg·keV·y}) 95\% \text{ CL}$

Background lines

		^{nat} Ge–dets (3.2 kg·y) ^{enr} Ge–dets (6.1		s (6.1 kg·y)	HdM	
isotope	energy [keV]	tot/bck [cnt]	rate [cnt/(kg·y)]	tot/bck [cnt]	rate [cnt/(kg·y)]	rate [cnt/(kg·y)]
⁴⁰ K	1460.8	85 / 15	$21.7^{+3.9}_{-3.1}$	125 / 42	$13.5^{+2.5}_{-2.2}$	181 ± 2
⁶⁰ Co	1173.2	43 / 38	< 5.8	182 / 152	$5.1^{+3.1}_{-3.1}$	55 ± 1
	1332.3	31 / 33	< 3.8	93 / 101	< 3.1	51 ± 1
^{137}Cs	661.6	46 / 62	< 3.2	335 / 348	< 5.9	282 ± 2
²²⁸ Ac	910.8	54 / 38	$5.0^{+3.0}_{-3.0}$	294 / 303	< 11.1	29.8 ± 1.6
	968.9	64 / 42	$6.7^{+3.8}_{-3.1}$	247 / 230	< 15.2	17.6 ± 1.1
208 Tl	583.1	56 / 51	< 6.5	333 / 327	< 7.6	36 ± 3
	2614.5	9 / 2	$2.1^{+1.2}_{-1.0}$	10 / 0	$1.5^{+0.7}_{-0.5}$	16.5 ± 0.5
²¹⁴ Pb	352	740 / 630	$34.6^{+15.2}_{-12.4}$	1770 / 1688	$13.2^{+11.5}_{-7.9}$	138.7 ± 4.8
²¹⁴ Bi	609.3	99 / 51	$14.8^{+4.9}_{-3.5}$	351 / 311	$6.2^{+4.7}_{-4.0}$	105 ± 1
	1120.3	71 / 44	$8.4^{+3.8}_{-3.4}$	194 / 186	< 6.1	26.9 ± 1.2
	1764.5	23 / 5	$5.5^{+2.0}_{-1.6}$	24 / 1	$3.6^{+0.9}_{-0.9}$	30.7 ± 0.7
	2204.2	5/2	$0.8^{+0.9}_{-0.7}$	6 / 3	$0.4^{+0.4}_{-0.4}$	8.1 ± 0.5