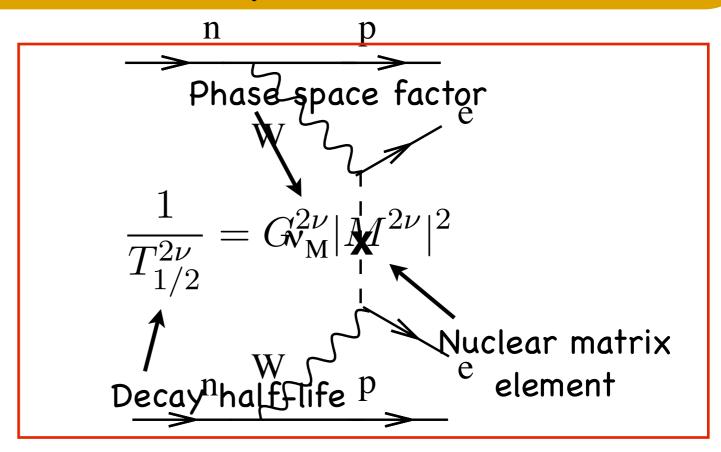


Recent results from KamLAND-Zen

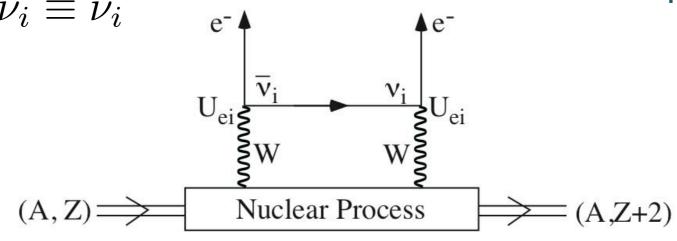
T. O'Donnell
UC Berkeley & Lawrence Berkeley National Lab
2013 Moriond Electroweak Session
5/3/2013


Outline

- What's so interesting about double beta decay?
- Overview/sample of experimental approaches
- KamLAND-Zen -A new application of KamLAND

- Detector performance and data analysis
- Results from 1st phase & comparison with KKDC claim

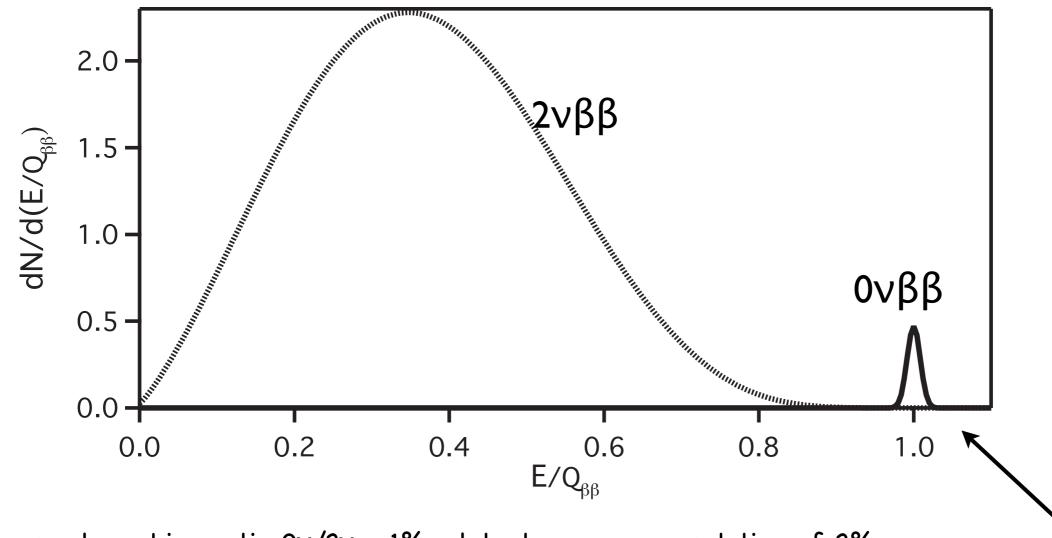
Double Beta Decay (BB)



- Simultaneous decay of 2 neutrons in a nucleus
- Second-order weak process, allowed in SM
- Observable only if 'ordinary' beta decay is inhibited
- Directly observed in 12 nuclei, half lives ~ 10¹⁹-10²¹ years!
 depending on the nuclear system

Neutrinoless Double Beta Decay (OvBB)

• Hypothetical $\beta\beta$ decay mode allowed if neutrinos are Majorana particles, i.e. $\bar{\nu}_i \equiv \nu_i$



- \bullet M^{OV} is not known, must be estimated theoretically, estimates vary by factor of ~2 depending on method
- For $m_{\beta\beta}$ = 50 meV estimated half lives 10^{25} 10^{27} years! depending on the nuclear system

ββ and Ovββ Experiments

Summed energy spectrum of final state electrons

Assumes a branching ratio 0v/2v = 1%, detector energy resolution of 2%

"Region of interest"

• For Ονββ expect a peak at the decay Q-value in the summed energy spectrum of final state electrons

Rule of thumb for 0νββ half-life sensitivity

half-life sensitivity
$$\propto a \cdot \epsilon \sqrt{\frac{M \cdot t}{b \cdot \delta E}}$$

\overline{a}	isotopic abundance
ϵ	detection efficiency
M	total detector mass
b	background index (e.g cnts/keV·kg·yr)
δE	energy resolution
t	exposure time

Want to maximize sensitivity for a given t

Some ongoing or planned OVBB searches

 There are many searches ongoing and planned (sorry if I left out your experiment)

Candidate Isotope	Experiment
⁴⁸ Ca	Candles
⁷⁶ Ge	Gerda, Majorana
⁸² Se	SuperNemo,Lucifer
¹³⁰ Te	CUORE
¹³⁶ Xe	EXO, NEXT, KamLAND-Zen
¹⁵⁰ Nd	SNO+

Speakers present from these experiments

⁴⁸Ca - Candles III

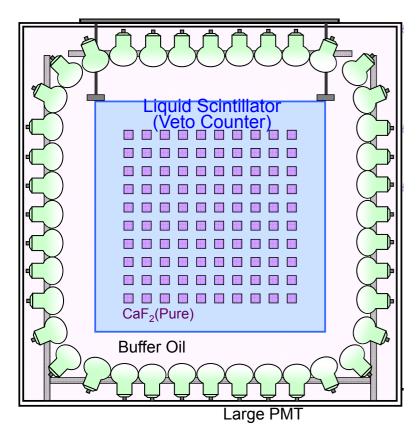


Figure taken from S. Umehara PANIC 2011

- 96 natCaF₂ scintillator crystals (300 kg) immersed in liquid scintillator shield
- $Q_{\beta\beta} = 4.273$ MeV -- above most natural radioactivity
- Currently running in Kamioka Mine
- Target sensitivity: $\langle m_{\beta\beta} \rangle \sim 500 \text{ meV}$

a	0.187%
ϵ	> 50%
M	$\sim 305 \mathrm{kg}$
$b\left[\frac{\text{cnts}}{\text{keV}\cdot\text{kg}\cdot\text{yr}}\right]$	$\sim 1 \times 10^{-4}$
δE	$\sim 4\%$ at Q-value

- Very competitive w.r.t most parameters
- Pursuing enrichment for future phase (difficult for ⁴⁸C)
- Existing limit from Candles predecessor
 Elegant VI (~0.03 kgxyr):

$$T_{1/2}^{0\nu} > 5.8 \times 10^{22} \,\mathrm{yr} \quad (90\% \,\mathrm{C.L})$$

⁷⁶Ge - Gerda, Majorana

- Historically ⁷⁶Ge is very interesting
- Controversial claim for observation of Ονββ decay of ⁷⁶Ge from part of the Heidelberg-Moscow collaboration

$$T_{1/2}^{0\nu} = 2.23_{-0.31}^{+0.44} \times 10^{25} \text{ yr}$$
 KKDC Claim (71.5 kg x yr)

- Gerda and Majorana search for 0νββ of ⁷⁶Ge
- Both taking phased approach with initial goal to test KKDC claim
- Stay tuned for Gerda talk this afternoon!

¹³⁰Te - CUORE

Figure courtesy of CUORE collaboration

- 988 natTeO2 bolometers cooled 10mK in cryostat
- Q-value = 2.530 MeV, but excellent energy resolution
- Under construction at Gran Sasso Lab, data-taking expected early 2015
- Target sensitivity: $T_{1/2}^{0v} \sim 1 \times 10^{26} \text{ yr}$

\overline{a}	34%
ϵ	87%
M	$\sim 750\mathrm{kg}$
$b\left[\frac{\mathrm{cnts}}{\mathrm{keV\cdot kg\cdot yr}}\right]$	$\sim 1 \times 10^{-2}$
δE (FWHM)	$\sim 5 \text{ keV at Q}$

- Will hear more details from CUORE this afternoon
- Current limit from Cuoricino (19.75 kgxyr):

$$T_{1/2}^{0\nu} > 2.8 \times 10^{24} \,\mathrm{yr} \quad (90\% \,\mathrm{C.L})$$

¹³⁶Xe - EXO, NEXT, KamLAND-Zen

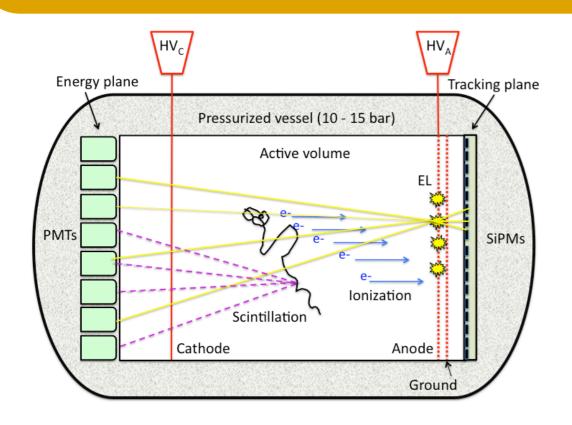


Figure from NEXT-100 TDR (2012 JINST 7T06001)

ϵ	$\sim 25\%$
$M(^{136}{ m Xe})$	100 kg
$b\left[\frac{\mathrm{cnts}}{\mathrm{keV}\cdot\mathrm{kg}\cdot\mathrm{yr}}\right]$	$\sim 8 \times 10^{-4}$
δE (FWHM)	1% at Q

- High pressure Xe-gas electroluminescent time projection chamber
- Electroluminescent stage significantly improved E-resolution
- Approved to run at CanFranc lab, starting 2015
- Q-value = 2.457 MeV
- Event topology from TPC tracking significantly reduces background
- Target sensitivity: $T_{1/2}^{0v} = 6 \times 10^{25} \text{ yr}$ (90% CL)
- Current limits: see EXO and KamLAND-Zen later

82Se - SuperNemo

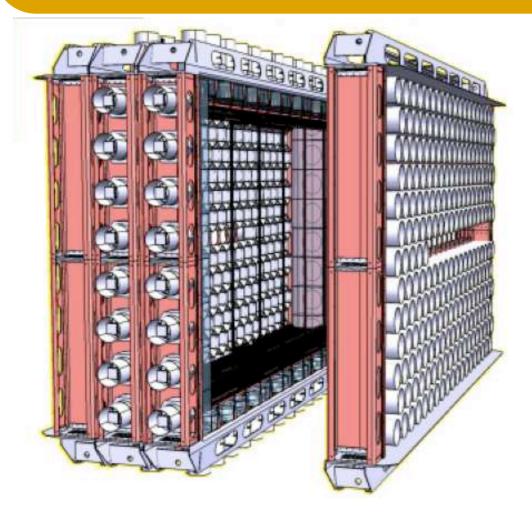
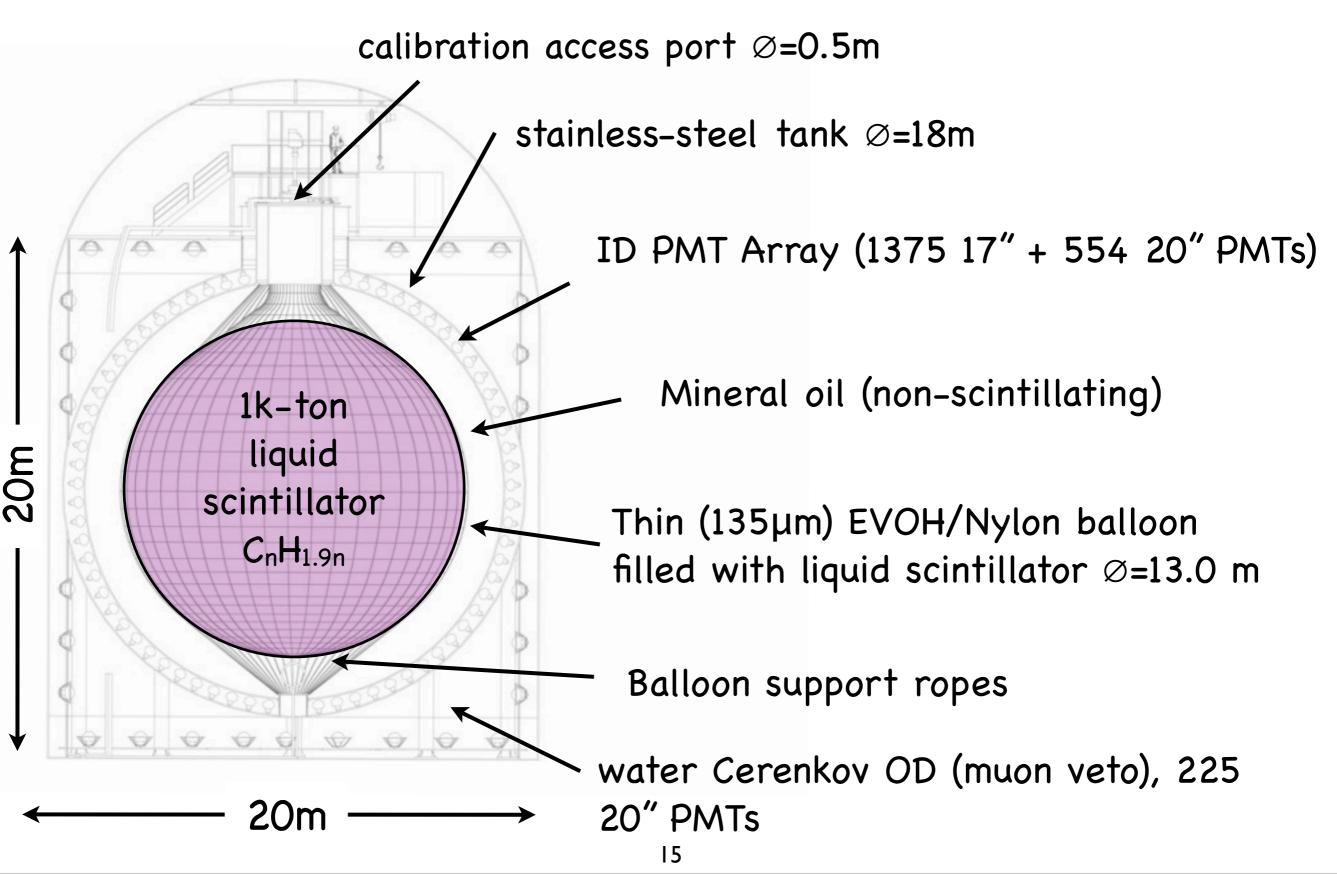


Figure from J.Phys. Conf. Ser 375 042012

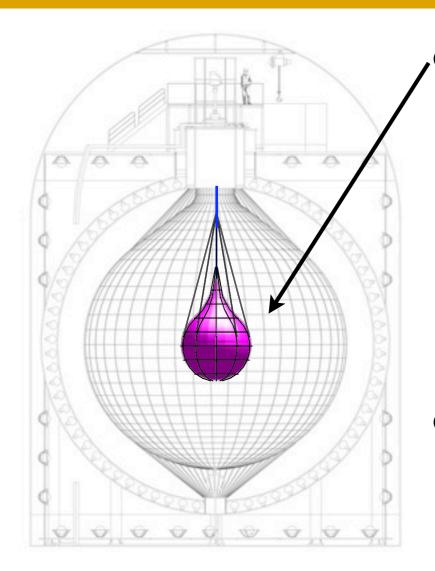
ϵ	>30%
$M(^{82}{ m Se})$	$100 - 200 \mathrm{kg}$
$b\left[\frac{\text{cnts}}{\text{keV}\cdot\text{kg}\cdot\text{yr}}\right]$	$O 10^{-4}$
δE (FWHM)	4% at $3~{\rm MeV}$

- Place large-area thin-foils (20) of source isotope near tracking detector and calorimeter
- Initially will focus on ⁸²Se, (Q=2.995 MeV)
- Can swap-out foils for other isotopes
- Will run in Modane lab, starting ~ 2014
- Reconstruction of decay kinematics important to study 0νββ mechanism
- Target sensitivity: $T_{1/2}^{0v} = 1^2 \times 10^{26} \text{ yr}$ (90% CL)
- Current limits NEM0-3:

100
Mo $T_{1/2}^{0\nu}$ (90 %C.L) > 1.0 ×10²⁴ yr 42 kg·yr 82 Se 2 $T_{1/2}^{0\nu}$ (90 %C.L) > 3.2 ×10²³ yr 5.68 kg·yr 12


KamLAND-Zen

KamLAND/KamLAND-Zen Collaboration



KamLAND-Zen collaboration is a subset of KamLAND

KamLAND -- host for KamLAND-Zen

KamLAND-Zen

Mini-balloon \emptyset =3.08 m installed into center of KamLAND LS, 25 μ m thick nylon film

²³⁸ U	2x10 ⁻¹² g/g
²³² Th	5x10 ⁻¹² g/g
⁴⁰ K	6x10 ⁻¹² g/g
Xe leakage	<0.26kg/yr

• Filled with 13 tons of Xe-loaded LS (300kg of ¹³⁶Xe):

Component	Chemical formula	Fraction
Decane	$C_{10}H_{26}$	82% (by volume)
Pseudocumene	C_9H_{12}	18% (by volume)
PPO	$C_{15}H_{11}NO$	2.7 g/l
Dissolved Xe	$90.93 \pm 0.05\%$ 136 Xe	2.5% by weight
Dissolved Ac	$8.89 \pm 0.01\%$ 134 Xe	2.070 by weight

 KL-Zen is only ~1% of KamLAND volume, reactor, geoneutrino, supernova watch etc continue in remaining KamLAND LS

KamLAND-Zen

- Inner-balloon fabricated in class 1 cleanroom near Sendai Spring 2011
- Great Eastern Japan Earthquake occurred (3/11/11)

Test balloon at Kamioka

Practice installation at swimming pool

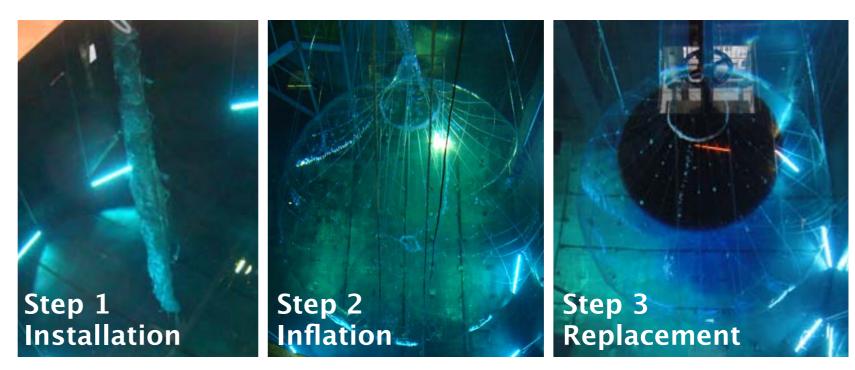
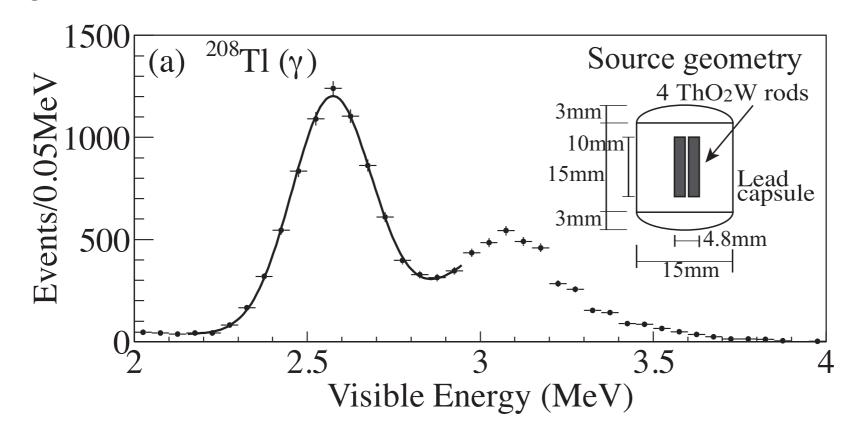
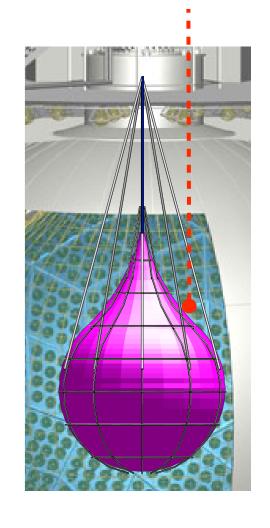


Figure courtesy of A. Gando 'First Results of Neutrinoless double beta decay Search with KamLAND-Zen', PhD Thesis, Tohoku University 2012


 Mini balloon was installed and filled in August 2011 - KamLAND-Zen began!

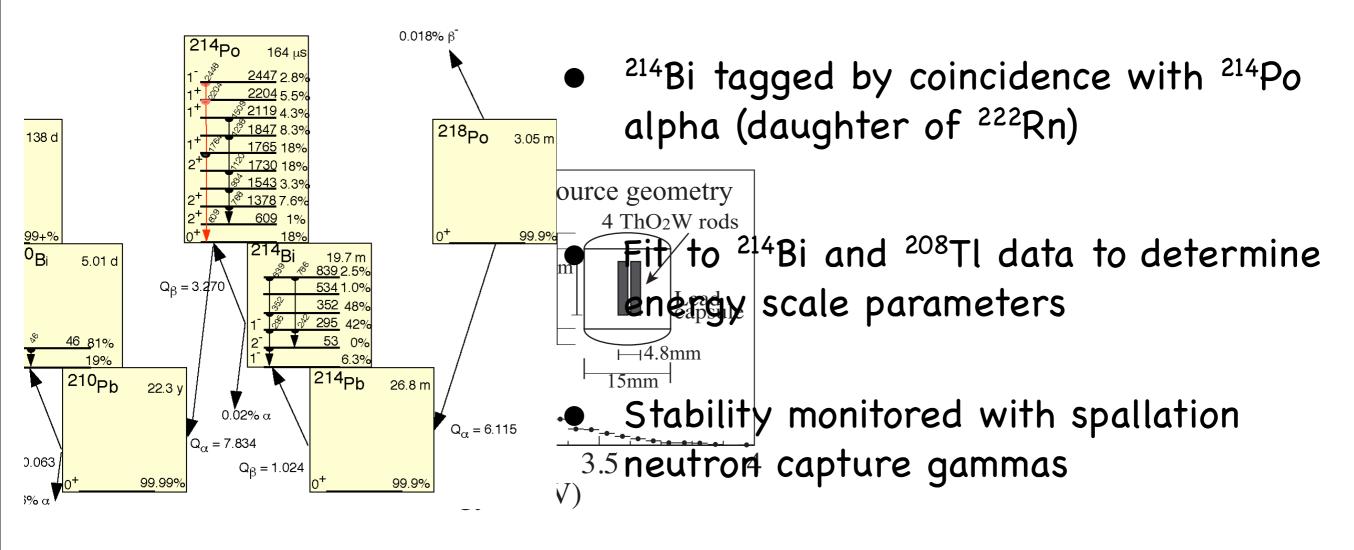

Event reconstruction

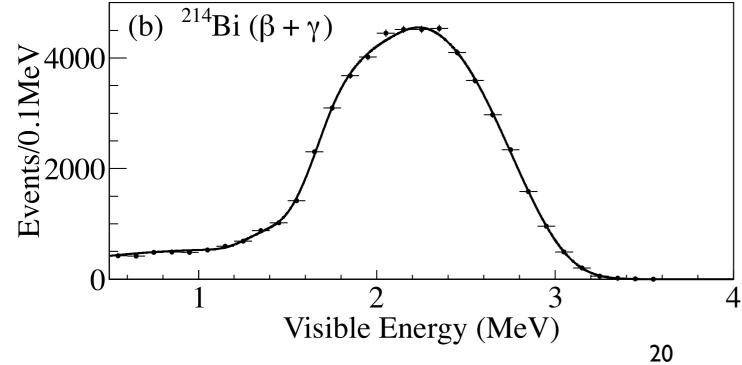
- Event position (vertex) reconstructed using the PMT hit time distribution, energy reconstructed using the hit-charge distribution (visible energy E_{vis})
- Ultimately analysis is done in terms of visible energy
- Real energy of particles must be converted to visible or reconstructed energy
- Energy scale model accounts for particle- and energy dependent effects:
 - Scintillator quenching effects via first order Birk's model
 - Energy loss by Cherenkov emission
 - Detector energy resolution

Energy Calibration - I

 ThO₂W source (208Tl) source deployed close to outer edge of inner-balloon

Energy resolution
$$X_{e}$$
-LS $\sigma_{E}/E = (6.6+/0.3) \%/\sqrt{E}$


%ents/0.1MeV 2000


rap

be

n Point

Energy Calibration - II

Data set

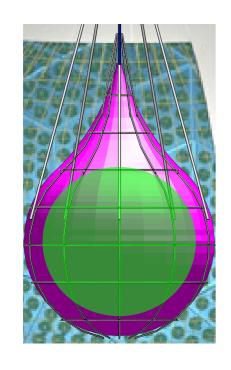
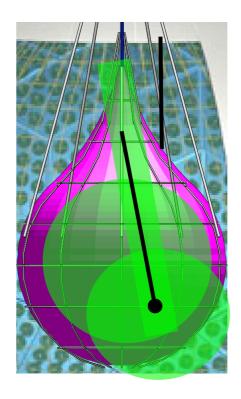

- First phase data set: Oct 12 2011 June 14 2012
- Divided into 2 periods: DS1, DS2, filtration hardware introduced in Feb. 2012, plumbing remained inside Xe-LS afterwards

TABLE I: Two data sets used in this 136 Xe $0\nu\beta\beta$ decay analysis.


	DS-1	DS-2	Total
livetime (days)	112.3	101.1	213.4
fiducial Xe-LS mass (ton)	8.04	5.55	_
Xe concentration (wt%)	2.44	2.48	_
¹³⁶ Xe mass (kg)	179	125	_
¹³⁶ Xe exposure (kg-yr)	54.9	34.6	89.5

Event selection

 Fiducial volume cut to reject background from mini-balloon and filtration hardware

DS1: R<1.35m

DS2 (filtration plumbing): R<1.35m , dR_{tube} >0.2m, dR_{nozzle}>1.2m

Fiducial volume cut optimized to reduce background for OnuBB analysis

Event selection

- Fiducial volume cut to reject background from mini-balloon
- Coincidence cuts:
 - Veto events within 2ms after muon candidates
 - Veto event pairs (E_1,T_1) , (E_2,T_2) with $(T_2-T_1<3ms)$ and $0.35<E_2<1.5$ MeV $(^{214}Bi-Po,^{212}Bi-Po$ cut)
 - Veto event pairs (E_1,T_1) , (E_2,T_2) with $(T_2-T_1<1ms)$ and $E_1>1.5$ MeV (antineutrino cut)
- Vertex-Time-Charge (VTQ) cut, based on PMT hit-time distribution, to remove noise events

after fiducial volume cut BB Selection efficiency: 99.8 +/- 0.2 % Dead time from cuts: <0.2 %

Remaining Backgrounds

- Residual background from mini balloon
 - Events on mini balloon reconstructing inside fid. volume due to vertex resolution
 - Between 1.2 MeV <E < 2.0 MeV IB activity dominated by ¹³⁴Cs, consistent with fallout from Fukushima reactor incident
 - Between 2.2 MeV < E < 3.0 MeV IB activity is dominated by ²¹⁴Bi decays

Spallation backgrounds

- ¹⁰C and ¹¹C estimated from previous KamLAND data
- Not much previous data on Xe spallation products. We can place limits on short lived Xe-products using post-muon data
- Longer lived spallation products estimated to be negligible from simulation

Internal Xe-LS Backgrounds

Residual ²³²Th (²¹²Bi-Po) and ²³⁸U (²¹⁴Bi-Po) in Xe-LS assuming equilibrium:

238U	1.3+/- 0.2 x10 ⁻¹⁶ g/g
²³² Th	1.8+/- 0.1 x10 ⁻¹⁵ g/g

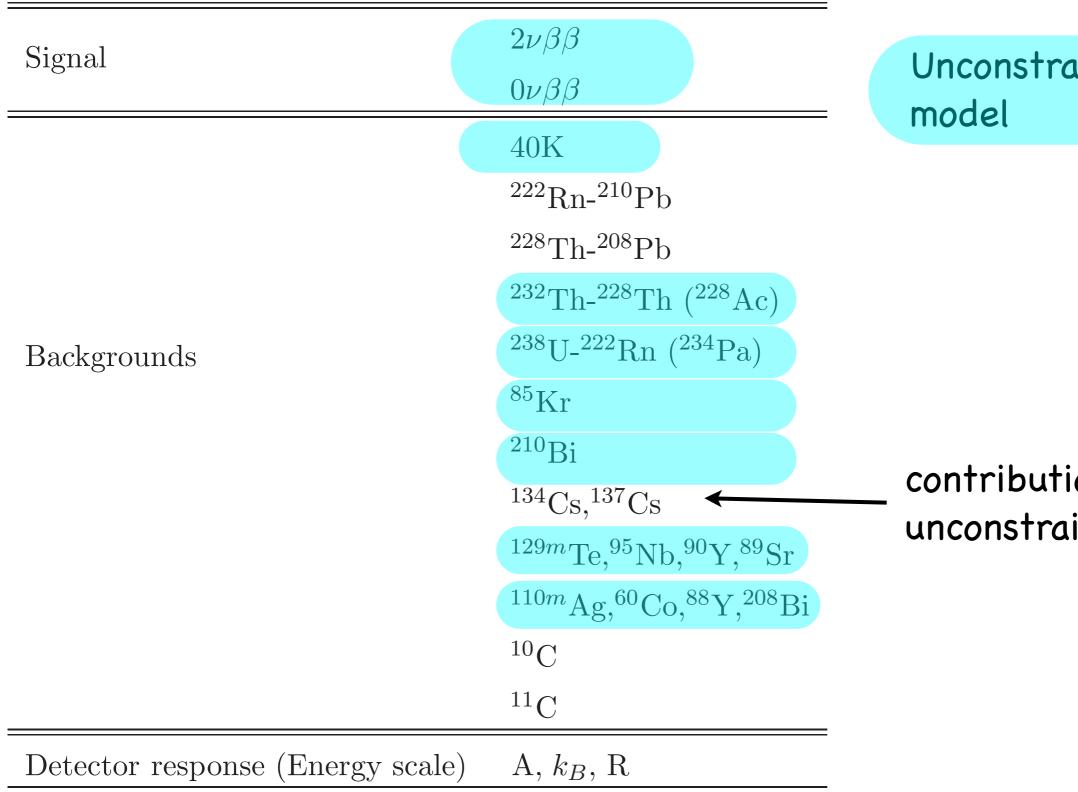
 Searched Table of Isotopes for long-lived isotopes leading to decays in the ROI for OvBB search

²⁰⁸ Bi (EC)	$\tau = 5.3 l \times 10^5 yr$	Q=2.88 MeV
88Y(EC)	τ=154 d	Q=3.62 MeV
⁶⁰ Co (β ⁻)	τ=7.61 yr	Q=2.82 MeV
II0mAg (β-)	τ=360 d	Q=3.01 MeV

Analysis

- Binned maximum likelihood fit to the energy spectrum of candidates (energy-likelihood)
- Time-likelihood to constrain some backgrounds in OvBB ROI by their decay lifetime
- Penalty-likelihood to account for other constraints on some fit parameters, e.g energy scale model

$$\chi^2 = \chi^2_{energy} + \chi^2_{time} + \chi^2_{penalty}$$


	$2\nu\beta\beta$
Signal	0 uetaeta
	40K
	222 Rn- 210 Pb
	228 Th- 208 Pb
	232 Th- 228 Th (228 Ac)
Backgrounds	^{238}U - $^{222}\text{Rn} \ (^{234}\text{Pa})$
	$^{85}{ m Kr}$
	$^{210}\mathrm{Bi}$
	$^{134}\mathrm{Cs},^{137}\mathrm{Cs}$
	129m Te, 95 Nb, 90 Y, 89 Sr
	110m Ag, 60 Co, 88 Y, 208 Bi
	$^{10}\mathrm{C}$
	¹¹ C
Detector response (Energy scale)	A, k_B, R

		-
Signal	2 uetaeta	
	$0\nu\beta\beta$	_
	40K	
	222 Rn- 210 Pb	
	228 Th- 208 Pb	
Backgrounds	232 Th- 228 Th (228 Ac)	
	^{238}U - $^{222}\text{Rn} \ (^{234}\text{Pa})$	
	$^{85}{ m Kr}$	
	$^{210}\mathrm{Bi}$	
	$ ho_{134}_{\mathrm{Cs}},^{137}_{\mathrm{Cs}}$	Possible fallout products
	129m Te, 95 Nb, 90 Y, 89 Sr	
	110m Ag, 60 Co, 88 Y, 208 Bi	
	$^{10}\mathrm{C}$	
	$^{11}\mathrm{C}$	
Detector response (Energy scale)	A, k_B, R	-

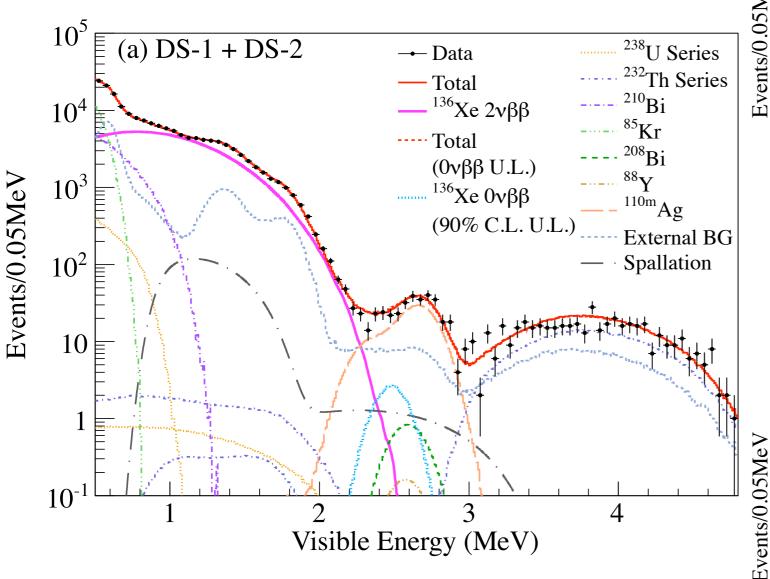
Signal	2 uetaeta
	$0\nu\beta\beta$
	40K
	222 Rn- 210 Pb
	228 Th- 208 Pb
	232 Th- 228 Th (228 Ac)
Backgrounds	^{238}U - $^{222}\text{Rn} \ (^{234}\text{Pa})$
	$^{85}{ m Kr}$
	$^{210}\mathrm{Bi}$
	$^{134}{\rm Cs}, ^{137}{\rm Cs}$
	129m Te, 95 Nb, 90 Y, 89 Sr
	^{110m} Ag, ⁶⁰ Co, ⁸⁸ Y, ²⁰⁸ Bi
	$^{10}\mathrm{C}$
	$^{11}\mathrm{C}$
Detector response (Energy scale)	A, k_B, R

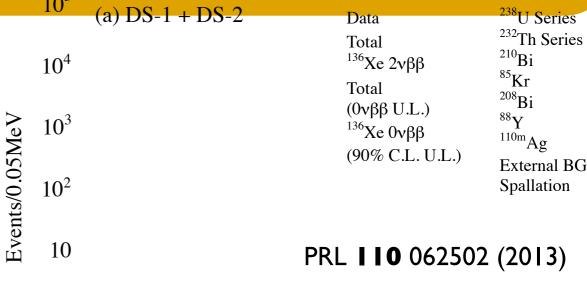
Possible backgrounds in OvBB ROI from ENDSF database search

Signal	2 uetaeta	Constrained in model
	0 uetaeta	Constrained in model
	40K	
²¹⁴ Bi-Po coincidences	222 Rn- 210 Pb	IB contribution from
²¹² Bi-Po coincidences	228 Th- 208 Pb	balloon study
	232 Th- 228 Th (228 A	Ac)
Backgrounds	^{238}U - ^{222}Rn (^{234}Pa	\mathbf{a}
	$^{85}{ m Kr}$	
	$^{210}\mathrm{Bi}$	TD contribution from
	$^{134}{\rm Cs}, ^{137}{\rm Cs}$	IB contribution from
	129m Te, 95 Nb, 90 Y, 8	$_{ m 89Sr}$ balloon study
	110m Ag, 60 Co, 88 Y,	$^{208}\mathrm{Bi}$
	$^{10}\mathrm{C}$	Spallation studies at
	$^{11}\mathrm{C}$	KamLAND
Detector response (Energy scale)	A, k_B, R	Calibration, ²¹⁴ Bi study

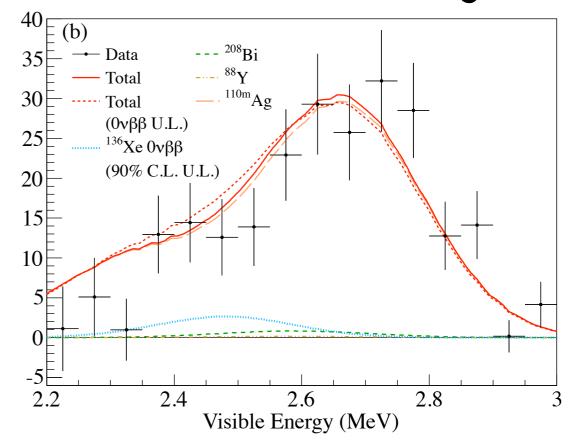
Unconstrained in

contribution in Xe-LS unconstrained


Signal	2 uetaeta
	$0\nu\beta\beta$
	40K
	222 Rn- 210 Pb
	228 Th- 208 Pb
	232 Th- 228 Th (228 Ac)
Backgrounds	^{238}U - $^{222}\text{Rn} \ (^{234}\text{Pa})$
	$^{85}{ m Kr}$
	$^{210}\mathrm{Bi}$
	$^{134}\mathrm{Cs},^{137}\mathrm{Cs}$
	129m Te, 95 Nb, 90 Y, 89 Sr
	^{110m} Ag, ⁶⁰ Co, ⁸⁸ Y, ²⁰⁸ Bi
	$^{10}\mathrm{C}$
	¹¹ C
Detector response (Energy scale)	A, k_B, R


No assumption about filtration is made in fit

Rates in DS1 and DS2 are independent in fit


Result

Candidate spectrum + Best-fit decomposition for DS1 and DS2

Close up₂of OvBB region (Data - known bkg)

Double beta decay results

Two neutrino mode:

DS-1 DS-2
$$2\nu\beta\beta$$
 Rate $(\text{ton·day})^{-1}$ 82.9 ± 1.1 (stat) ± 3.4 (syst) 80.2 ± 1.8 (stat) ± 3.3 (syst)

$$T_{1/2}^{2\nu} = 2.30 \pm 0.03 \,(\text{stat}) \pm 0.09 \,(\text{syst}) \times 10^{21} \,\text{yr}$$

Neutrino-less mode

	DS-1	DS-2
N $(0\nu\beta\beta)$ (90% C.L upper limit)	<16	<8.7
$T_{1/2}^{0\nu} > 1.9 \times 10^{25} \mathrm{yr} (90\% \mathrm{C.L})$		

- Expected sensitivity from MC of ensemble of experiments is 1.0 x 10²⁵yr.
- 12% chance to get limit greater than one reported

Systematic Error

	DS1	DS2
Fid. vol.	3.9%	4.1%
Xe-concentration	0.34%	0.37%
Xe-enrichment	0.05%	0.05%
energy scale	0.3%	0.3%
detection efficiency	0.2%	0.2%
Total	3.9%	4.1%

 Fid. vol. systematic error estimated from difference between nominal fiducial volume and fraction of ²¹⁴Bi tagged events that pass fid. vol. cuts

EXO-200

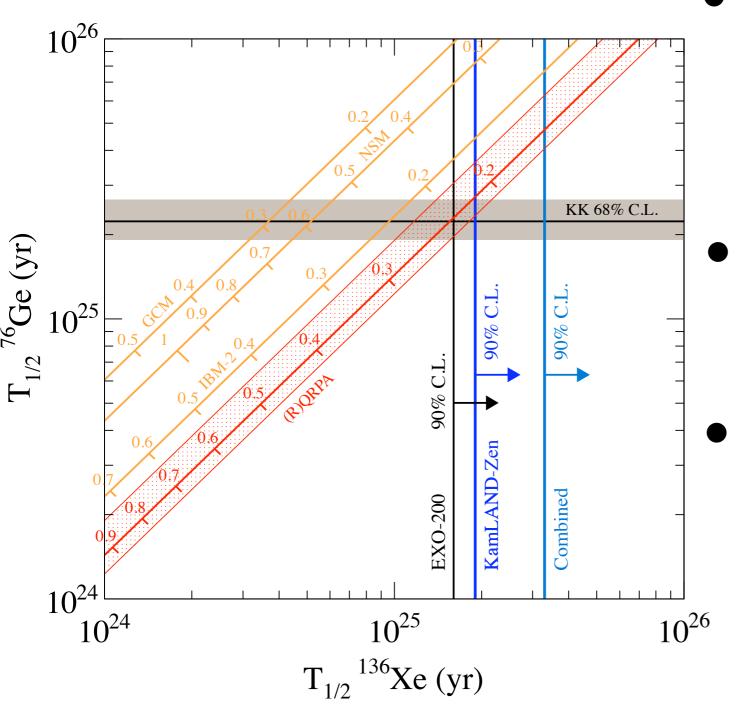
- The EXO-200 experiment also searches from 0νββ of 136Xe
- We will hear more details from EXO this afternoon
- EXO results:

$$T^{2v}_{1/2} = 2.23 + -0.017 \text{ (stat)} + -0.22 \text{ (syst)} \times 10^{21} \text{ yr}$$
 PRL 107 212501 (201

$$T^{0v}_{1/2} > 1.6 \times 10^{25} \text{ yr } (90\% \text{ CL})$$

PRL 109 032505 (2012)

Combination of KL-Zen and EXO

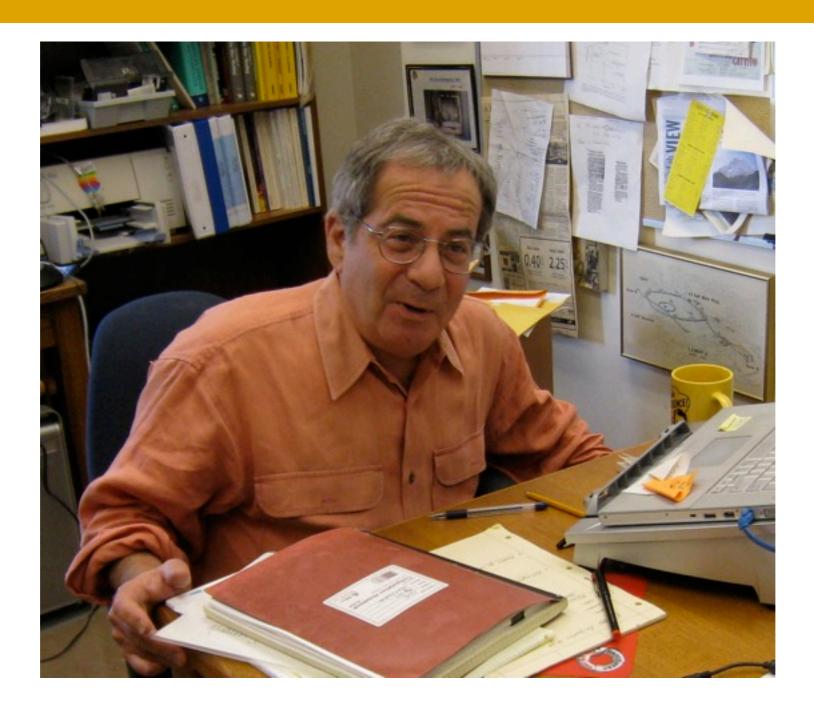

Combined analysis of KLZ and EXO OvBB data:

$$T_{1/2}^{0\nu} > 3.4 \times 10^{25} \,\mathrm{yr} \quad (90\% \,\mathrm{C.L})$$

- Expected sensitivity of combined experiment: $1.6 \times 10^{25} yr$.
- 7% chance to get limit greater than one reported
- Using a range of available nuclear matrix elements mass limit:

$$\langle m_{\beta\beta} \rangle < (120 - 250) \text{ meV}$$

Comparison with KKDC Claim

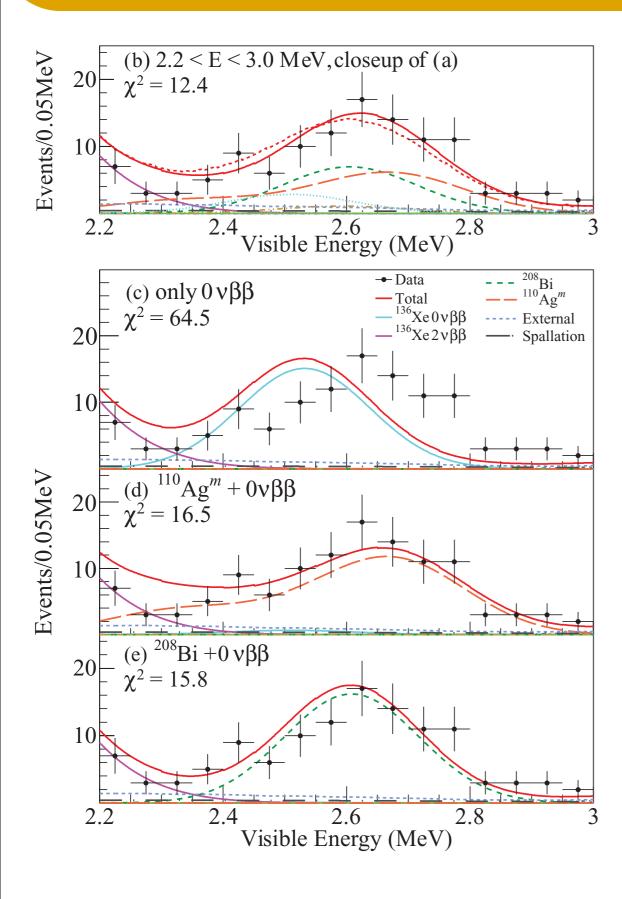

- Combined EXO-200 and KLZ result is inconsistent with KKDC claim in ⁷⁶Ge at 97.5% CL even for best-case NME
- NME is a major caveat in comparison of half life limits in
 - If we treat spread in NME calculations as statistical error then EXO-200 and KLZ result is inconsistent with KKDC claim in ⁷⁶Ge at 95.6% CL

PRL **IIO** 062502 (2013)

Conclusion

- KamLAND-Zen was a very effective modification of the KamLAND detector
- Combined EXO-KLZ half-life lower limit on $T_{1/2}^{OV}$ of 136 Xe in tension with KKDC claim for available NME calculations
- There is a rich and diverse program of double beta decay searches in progress/planned
- These experiments will have sensitivity to further test KKDC claim and probe $\langle m_{\beta\beta} \rangle$ down to 50~100 meV

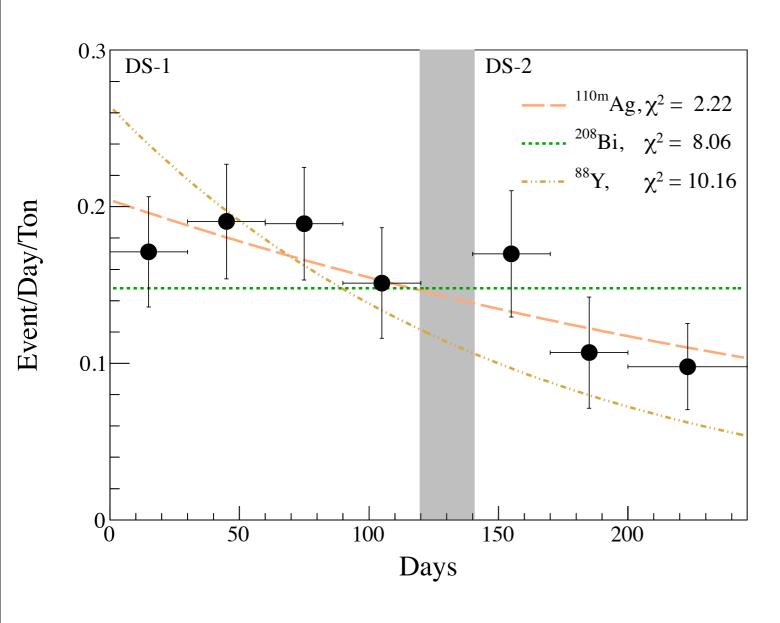
Dedication



Stuart Freedman

Fondly remembered collaborator, mentor, and friend

Extra slides


Investigating background near 2.6 MeV

From DS1 only with R<1.2 m

Investigating background near 2.6 MeV

(Events in OvBB ROI)-(known backgrounds)

Assuming filtration has no effect 110mAg is preferred

Energy scale model

$$\frac{\bar{E}_{vis}}{E_{\text{real}}} = A \times \left(\frac{1}{1+R} \cdot \frac{1}{1+k_B(dE/dx)} + \frac{R}{1+R} \cdot \frac{dN_{\text{Ch}}}{dE}\right)$$

Energy scale model

$$\frac{\bar{E}_{vis}}{E_{\text{real}}} = \mathbf{A} \times \left(\frac{1}{1+R} \cdot \frac{1}{1+k_B(dE/dx)} + \frac{R}{1+R} \cdot \frac{dN_{\text{Ch}}}{dE}\right)$$

Overall linear response of detector

Scintillator nonlinearity from quenching

Fraction of visible energy (photo electrons) from Cherenkov effects

 $\mathsf{E}_{\mathsf{vis}}$ distribution obtained by smearing $ar{E}_{vis}$ with gaussian resolution

Spallation Backgrounds

- Cosmogenic production of ¹⁰C and ¹¹C
- ¹⁰C and ¹¹C can be vetoed by muon-neutron-β triple coincidence but this is not pursued for now

Isotope	Event rate $(ton day)^{-1}$
Spallation product from ¹² C ^a	
¹⁰ C	$(2.11 \pm 0.44) \times 10^{-2}$
11 C	1.11 ± 0.28
Spallation products from xenor	n with lifetime < 100 s
$1.2 \; { m MeV} < E < 2.0 \; { m MeV}$	< 0.3
$2.2 \; {\rm MeV} < E < 3.0 \; {\rm MeV}$	< 0.02

- Not much previous data on Xe spallation products. Limits above estimated from KLZ data
- Longer lived spallation products estimated to be negligible from Geant4 simulation