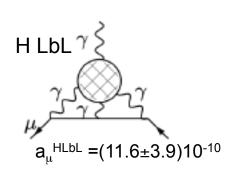
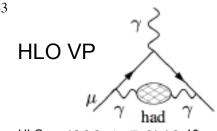


Outline

- Measurement of the μμγ spectrum with KLOE
- Hadronic cross section from ππγ/μμγ ratio
- HVP contribution to g_{μ} -2: $\Delta^{\pi\pi}a_{\mu}$ in the region of [0.1<s<0.95] GeV²

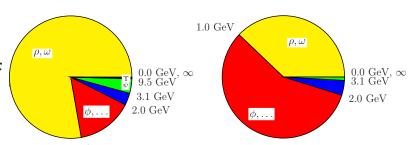

Search for U-boson within ISR events: μμγ final state

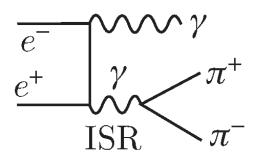

Hadron vacuum polarization

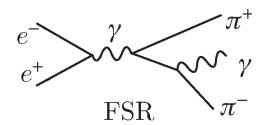
- Hadron vacuum polarization, HVP, is relevant for precision tests of the SM
- Prediction of the HVP contribution is obtained from the hadronic cross section weighted by kernel functions, integrated over s (dispersion integrals, DI)

$$\Delta v^{had} = \int_{s_{min}}^{s_{max}} \sigma_{had}^{0}(s) \cdot \mathbf{K}(s) ds$$

- Precision σ^0_{had} predictions from pQCD requires q² > σ^0_{had} σ^0_{had} σ^0_{had} is used
- For muon anomaly, $a_{\mu} = (g_{\mu} 2)/2 = 1.16591790(65) \times 10^{-3}$ theoretical precision, of 6.5 10^{-10} is from HVP (5.6) and hadronic light-by-light scattering (3.9)




 $a_{\mu}^{HLO} = (692.4 \pm 5.6)10^{-10}$ [Jegerlehner, Phys.Rept. 477 (2009) 1]


Hadronic cross section

Contributions from the threshold region of hadron production is enhanced by kernel dependence on 1/s² and by the presence of resonance

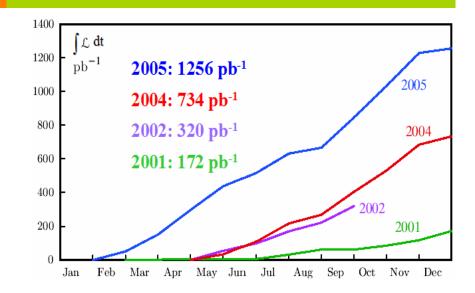
- 70% of the $\Delta^{\text{had,lo}}$ a_u value comes from s < 1 GeV²
- Most recent hadronic cross section measurements at s< 1 GeV² have been obtained from
 - energy scan by Novosibirsk experiments, CMD-2 and SND
 - radiative return by experiments at the ϕ and B –factories
- From radiative return it is possible to select hadronic final states of any invariant mass s_{had} < s_R
- Angular cuts are effective to obtain ISR-enriched samples. Corrections for residual FSR effects are obtained from precision MonteCarlo generators
- Both, photon-tagged and untagged samples have been used. Photon-tagged samples have been used to reach the dipion threshold running at the ϕ -factory C. Bloise - Moriond EW - March, 8th

ISR processes

The hadronic cross section $\sigma^{0,\text{data}}_{\text{had}}$ in the DI is obtained from ISR processes and the radiator function H

$$\frac{d\sigma(e^+e^- \to \pi\pi\gamma)}{dM_{\pi\pi}^2} \bigg|_{ISR} = \frac{\sigma_{\pi\pi(\gamma)}^0(M_{\pi\pi}^2)}{s} H(M_{\pi\pi}^2; s)$$

Two KLOE measurements, PLB670,285 and PLB700,102


Alternatively, from the ratio of the ISR processes, ππγ and μμγ,

$$\sigma_{\pi\pi(\gamma)}^{0}(M^{2}) = \frac{\frac{d\sigma(e^{+}e^{-} \rightarrow \pi\pi\gamma)}{dM^{2}}\Big|_{ISR}}{\frac{d\sigma(e^{+}e^{-} \rightarrow \mu\mu\gamma)}{dM^{2}}\Big|_{ISR}}\sigma_{\mu\mu}^{0}(M^{2})$$
arXiv:1212.4524
Accept. by PLB

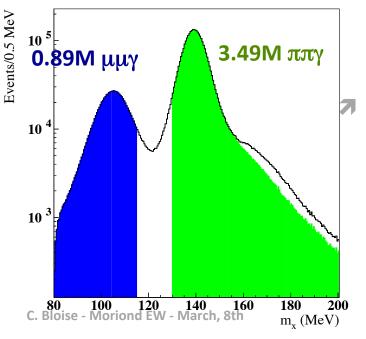
The contribution to the muon anomaly from HVP (s < 1 GeV²) is $\Delta a_{\mu}^{\pi\pi} = \int_{s_{\min}}^{s_{\max}} \sigma_{\pi\pi(\gamma)}^{0}(s) \cdot K(s) ds$

The KLOE experiment

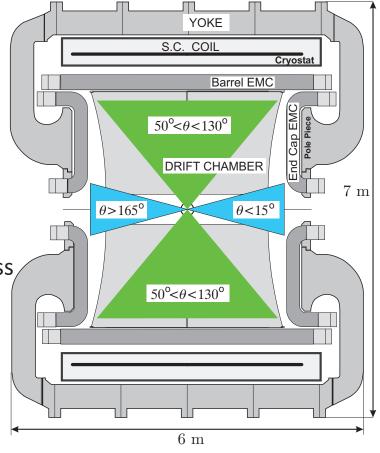
- The KLOE experiment, at the Daφne φfactory took data in 2001-2002 and 2004-2006
- 2.5 fb⁻¹ integrated at 1.02 GeV;
 250 pb⁻¹ at 1 GeV
- Excellent-quality data set for precision measurement on
 - CKM unitarity
 - QM, and CPT invariance;
 - **T** CP in kaons;
 - QCD models based on ChPT;
 - isospin-violating decays for the measurement of the light quark masses ratio;
 - hadronic cross section for the calculation of HVP
 - **γ**γ physics

New data taking, starting in June, to integrate 5 fb⁻¹ during 2013-15 [G. Amelino-Camelia et al., EPJ C68, 619 (2010)]

Work in progress for

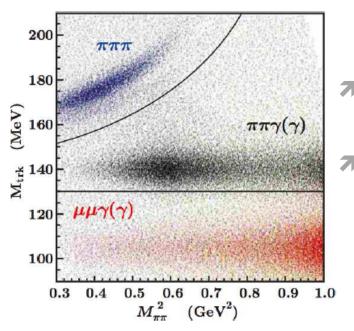

- DAFNE consolidation after the IP upgrade
- the KLOE upgrade with installation of IT, calorimeters at low angle, taggers for γγ physics

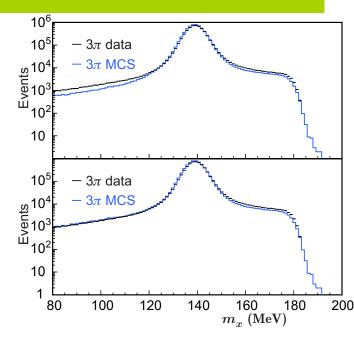
μμγ selection


- Fivent selection requires two opposite-charge particles at large angle with undetected photon at small angle, $cos(\theta_{μμ}) > cos(15°)$
- π μμγ, $\pi\pi\gamma$, eeγ final states are separated by
 - kinematical constraints giving m_x

$$E - \sqrt{p_+^2 + m_x^2} - \sqrt{p_-^2 + m_x^2} = |\vec{P} - (\vec{p}_+ + \vec{p}_-)|$$

by additional PID based on time-of-flight and energy deposit in the calorimeter

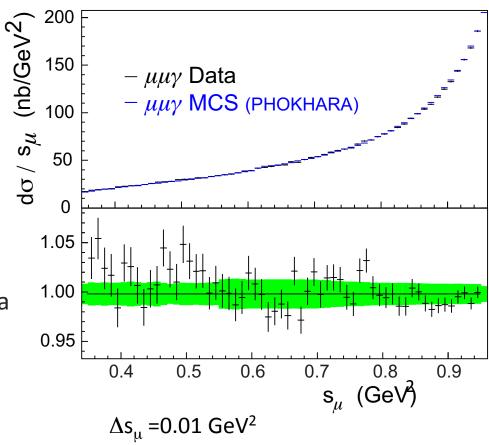

Absolute $\pi\pi\gamma$ cross section already measured



Data analysis

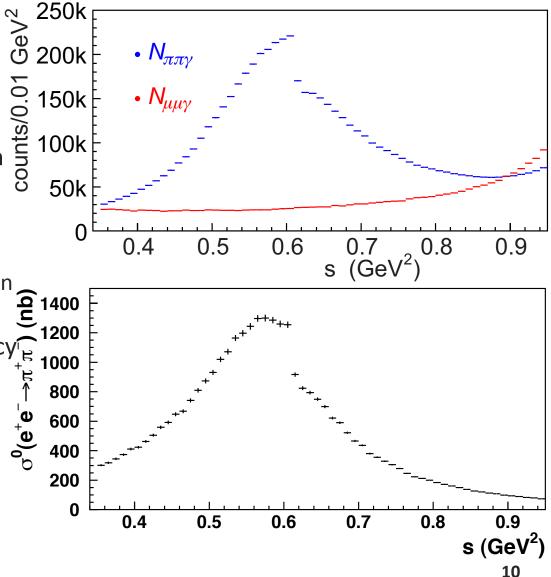
http://www.lnf.infn.it/kloe2/tools/getfile.php?doc_fname=K2PD-6.pdf&doc_ftype=docs

- Correction for Data/MC discrepancy on momentum reconstruction applied as a function of momentum and polar angle
- Pure πππ data sample used; Tails of the m_x distribution correctly predicted
- Residual background is evaluated with a fit to the μμγ, ππγ, πππ relative contributions to the m_x spectrum in the μμγ region and the weights used for background subtraction


- The worst contamination of the $\mu\mu\gamma$ spectrum is at the ρ peak, from $\pi\pi\gamma$
 - Tail of the m_x distribution checked by two different procedures
 - With track-quality requirements, leading to a factor of two lower contamination
 - With a selection procedure based on the Likelihood instead of m_x

μμγ spectrum

$$\frac{d\sigma_{\mu\mu\gamma(\gamma)}^{data}}{dM_{\mu\mu}^{2}} = \frac{\Delta N_{\mu\mu\gamma(\gamma)}^{sel} - \Delta N_{backg}^{fit}}{\Delta M_{\mu\mu}^{2}} \frac{1}{\varepsilon_{sel} \int L dt}$$


$$\frac{d\sigma_{\mu\mu\gamma(\gamma)}^{data}}{d\sigma_{\mu\mu\gamma(\gamma)}^{MC,NLO}} = 0.998 \pm 0.001_{stat} \pm 0.011_{syst}$$

- μμγ spectrum is in agreement with predictions of NLO generator Phokhara [S. Actis et al., Eur.Phys.J. C66 (2010) 585]
- 1% level of accuracy reached

ππγ/μμγ spectrum

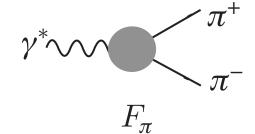
- ππγ spectrum from previous analysis
- σ^0 (e⁺e⁻→ππ) from the bin-by-bin ratio is independent from
 - radiator function H
 - vacuum polarization subtraction
- Systematics from global efficiency reduced
- No Luminosity measurement needed

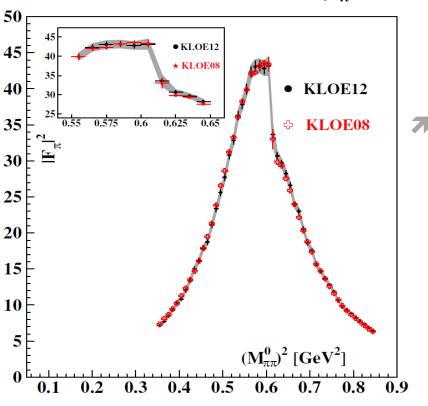
$\Delta^{\pi\pi}$ a_{μ}from KLOE

- The results are consistent, all of comparable statistical errors, with systematics from different sources
- The error of the new measurement has negligible contribution from theoretical uncertainty and acceptance
- KLOE result from both, SA and LA measurements, covers $^{\sim}70\%$ of the total the $\Delta^{\text{had,LO}}$ a_{μ} with 1% precision,

Contribution to systematics %	$\Delta^{\pi\pi}$ a _{μ,} ratio, SA-γ	Δ ^{ππ} a _{μ,} abs, SA-γ	Δ ^{ππ} a _{μ,} abs, LA-γ
Background subtraction	0.6	0.3	0.5
$f_0+\rho\pi$	negligible	negligible	0.4
Ω cut	-	-	0.2
Particle mass/PID	0.2	0.2	0.5
Tracking	0.1	0.3	0.3
Trigger	0.1	0.1	0.2
Acceptance	negligible	0.2	0.5
L3 Trigger	0.1	0.1	0.1
Luminosity	-	0.3	0.3
Total experimental	0.7	0.6	1.0
FSR treatment	0.2	0.3	0.8
Radiator H	-	0.5	0.5
Vacuum polarization	-	0.1	0.1
Total theoretical	0.2	0.6	0.9
Total systematics	0.7	0.9	1.1

$$\Delta a_{\mu}^{\pi\pi} = \int_{0}^{s_{\text{max}}} \sigma_{\pi\pi(\gamma)}^{0}(s) \cdot K(s) ds$$

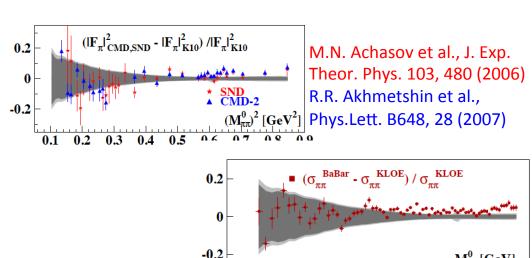

$$\Delta a_{\mu}^{\pi\pi} \left[(0.1 < s < 0.95) GeV^2 \right] = (488.6 \pm 6.0) 10^{-10}$$


	Data	$\Delta^{\pi\pi} a_{\mu} \cdot 10^{10} $ 0.35< s < 0.85 GeV 2
1212.4524	$\sigma_{\pi\pi(\gamma)}/~\sigma_{\mu\mu(\gamma),}$ SA- γ_{ISR}	377.4±1.1 _{stat} ±2.7 _{sys+th}
PLB 670,285	Abs. $\sigma_{\pi\pi(\gamma)}$, SA- γ_{ISR}	379.6±0.4 _{stat} ±3.3 _{sys+th}
PLB 700,102	Abs. $\sigma_{\pi\pi(\gamma)}$ LA- γ_{ISR}	376.6±0.9 _{stat} ±3.3 _{sys+th}

Pion form factor

Pion form factor measures the dependence on s of the photon coupling to the dipion system, with $F_{\pi}(0)=1$

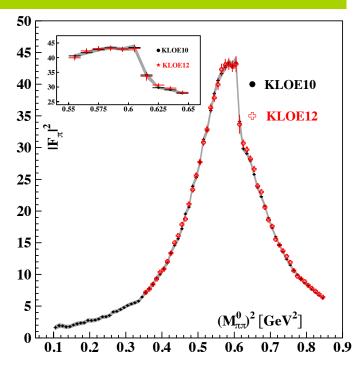
$$|F_{\pi}(s)|^2 = \frac{3}{\pi} \frac{s}{\alpha^2 \beta_{\pi}^3} \sigma_{\pi\pi(\gamma)}^0(s) (1 + \delta_{VP}) (1 - \eta_{\pi})$$

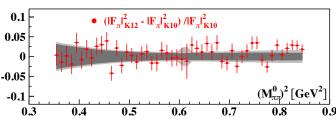


Pion form factor in agreement with previous measurements, from the absolute hadronic cross section, using both, γ -untagged (SA- γ), and γ -tagged (LA- γ) analyses

Data comparison

- In the overlap region with the tagged-photon analysis, 0.35<s<0.85, pion form factor results are in full agreement
- The agreement is good also with the other e ⁺e⁻ experiments, except for the region above the ρ peak, showing a deficit < 3%, negligible when weighted in the dispersion integral [M. Benayoun et al., arXiv:1210.7184 [hep-ph]]



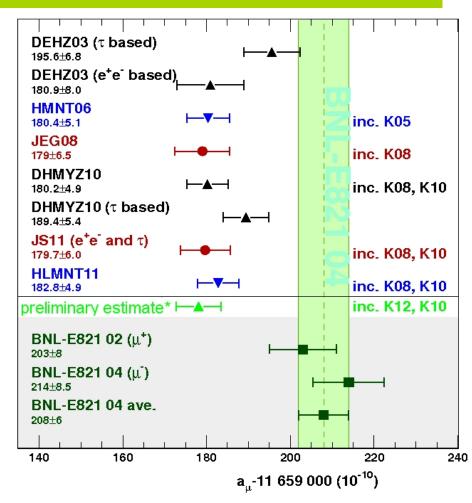

0.3

0.5

0.6

C. Bloise - Moriond EW - Mar

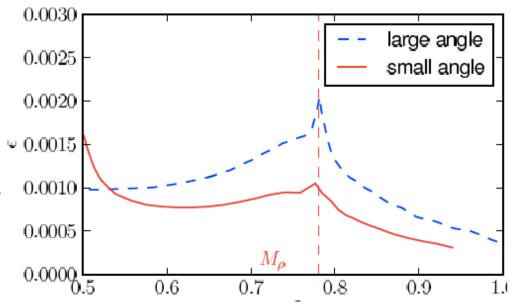
B. Aubert et al, Phys.Rev.Lett. 103, 231801(2009)


M_{mm} [GeV]

0.8

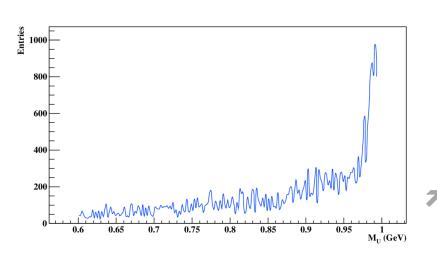
0.7

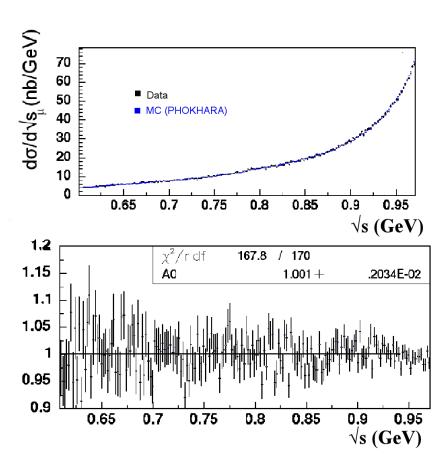
Summary on muon anomaly


- Discrepancy with experiment at 3.5σ level confirmed
- Tension between e⁺e⁻ and τ data reduced by 1σ [F. Jegerlehner et al., Eur.Phys.J. C71 (2011) 1632]

* Our extrapolation based on DHMYZ10

Dark-photon searches

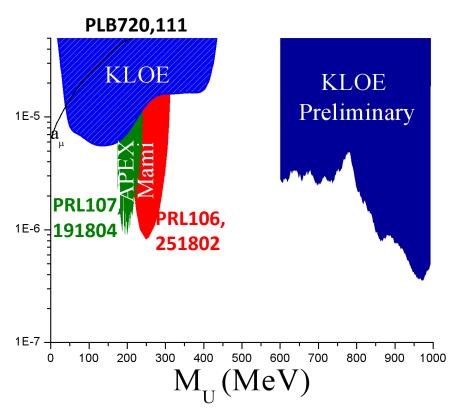

- The spectrum of the μμγ sample has been used to search for low-mass U-boson decaying to μμ pairs
- WIMP Dark matter belonging to a secluded sector could imply the existence of a gauge boson with kinetic coupling to the SM photon, $\varepsilon^2 = \alpha_D/\alpha \le 10^{-4}$ [N. Arkani-Hamed et al., PR D79, 015014 (2009)]
- At the fixed-target facilities, JLAB and MAMI-C, the U-boson search is based on electron-N scattering and U—) ee decay
- At the ϕ -factory we can study:
 - $\phi \rightarrow \eta \cup \eta \parallel, \rightarrow \eta \pi\pi, \rightarrow \pi \parallel$
 - \Rightarrow U $\gamma \rightarrow$ II γ



KLOE-2 discovery potential in the μμγ sample, with 5 fb⁻¹ [L.Berze' et al. EPJ C71(2011)1680]

Upper limits from μμγ spectrum

Exploiting the precision reached on the $\mu\mu\gamma$ spectrum in the region 0.6<Vs<1 GeV a sensitivity on $\epsilon^2\approx 10^{-6}$ has been reached with a preliminary analysis



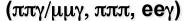
UL on the events per bin vs M_U using the CL_S distribution

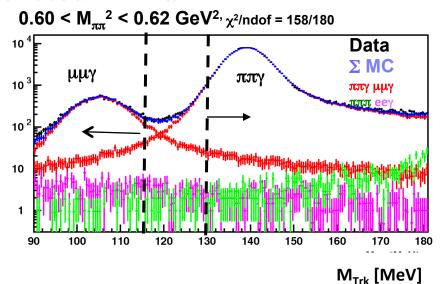
Exclusion plot

- The analysis of $\phi \rightarrow \eta$ ee is sensitive to the mass region (50<M_U < 400)

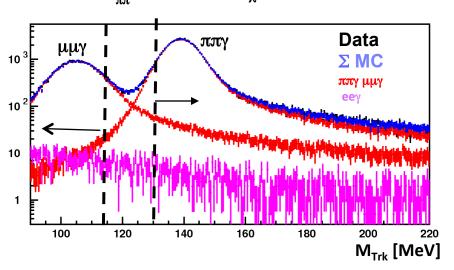
 MeV
- The results are published on PLB 720, 111
- In that region 60<M_U<200 MeV the results rule out the hypothesis of a Dark-photon as the explanation for the 3.5-σ discrepancy in the magnetic moment of the muon
- Further work is in progress, increasing statistics of the μμγ sample, processing eeγ final state, looking at μμ+missing energy

Conclusions

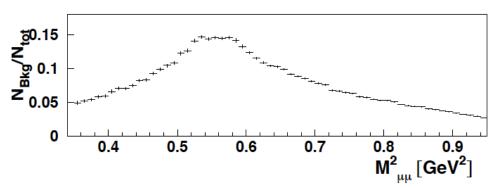

- The $\mu\mu\gamma$ spectrum has been measured with 1% precision
- From the bin-to-bin ratio of the $\pi\pi\gamma/\mu\mu\gamma$ spectra, we obtained a new measurement of the hadronic cross section $\sigma^0_{\pi\pi(\gamma)}$
- The result confirms
 - the KLOE previous measurements and associated systematics, and the calculation of the hadronic vacuum polarization contribution to the magnetic moment of the muon, showing a $3.5-\sigma$ discrepancy with the experimental result of BNL-E681
- We have searched for U-boson in the $\mu\mu\gamma$ spectrum. No structures have been observed. The exclusion plot obtained in the region (0.6<M_{II}< 1.0) GeV, rules out ϵ^2 in the 10⁻⁶ range

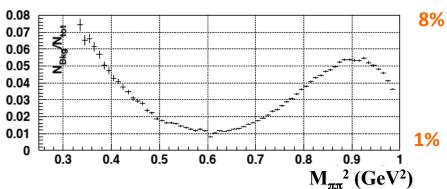

Spares

Background:



Main backgrounds estimated from MC shapes fitted to data distribution in M_{Trk}




 $0.84 < M_{\pi\pi}^2 < 0.86 \text{ GeV}^2 \chi^2/\text{ndof} = 179/258$

Tot % bckg to μμγ

Tot % bckg to ππγ

- Systematic error on μμγ due to background~1% in the ρ peak