Study of Standard Model Scalar Production in Bosonic Decay Channels in CMS

Guillelmo Gómez-Ceballos (on behalf of the CMS collaboration)

Massachusetts Institute of Technology

March 2013 - Moriond ElectroWeak

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

- Most sensitive channels
- ► Very good mass resolution: $H \rightarrow ZZ \& H \rightarrow \gamma \gamma$
- Large yield: $H \rightarrow WW$
- Selection criteria defined before looking at the signal region
- Large number of cross-checks and independent analyses
- Today's talk: paying attention to low mass region and updated analyses w.r.t. last year

17.3 ${\rm fb}^{-1}$ dataset only, figure for illustration

Key Points in the Object Id (just a few words)

- Trigger: single/double lepton/photon paths
- ▶ μ , e, τ , γ : relatively high $p_{\rm T}$ isolated objects
 - identification & isolation
 - momentum scale & resolution
- Jet reconstruction:
 - reject backgrounds and/or select VBF events
 - ▶ particle Flow-based, pile-up Id and pile-up subtraction of the energy
- b-tagging:
 - reject top backgrounds and/or select b-jets
 - based on displaced tracks and soft leptons
- $\blacktriangleright E_{\mathrm{T}}^{\mathrm{miss}}$:
 - select events with neutrinos and/or reject backgrounds
 - based on all particles pointing to primary vertex
- Systematics, data-driven methods

Analyses

Color code:

- Red: new update, shown today
- Blue: no new update, briefly shown today
- Green: no new update, some information in back-up slides
- High sensitivity analyses:
 - $\blacktriangleright \ \mathrm{H} \to \mathrm{ZZ} \to 4\ell$
 - $H \rightarrow WW \rightarrow 2\ell 2\nu$
 - $\blacktriangleright \ \mathbf{H} \to \gamma \gamma$
- Other analyses at low masses:
 - WH \rightarrow WWW \rightarrow 3 ℓ 3 ν
 - W/ZH $\rightarrow qq' 2\ell 2\nu$
 - $\blacktriangleright \ \mathrm{H} \to \mathrm{Z}\gamma$

- High mass analyses:
 - $\blacktriangleright \ \mathrm{H} \to \mathrm{ZZ} \to 2\ell 2\nu$
 - $H \rightarrow ZZ \rightarrow qq'2\ell$
 - $\mathbf{H} \to \mathbf{W} \mathbf{W} \to \boldsymbol{q} \boldsymbol{q}' \ell \nu$
- Two analyses also very high performing at high mass:
 - $H \rightarrow ZZ \rightarrow 4\ell$, including $H \rightarrow ZZ \rightarrow 2\ell 2\tau$
 - $\blacktriangleright \ H \to WW \to \ell \nu \ell \nu$

${\rm H} \rightarrow {\rm ZZ} \rightarrow 4\ell$ (I) - Introduction

- Four isolated leptons from the same vertex
- Good mass resolution
- Very small signal rate, but high signal-to-background ratio
- Backgrounds:
 - ► ZZ continuum: almost irreducible, different mass shape
 - ► Z + jets, Zbb & tt
 : lepton isolation and impact parameter, to reject $b \rightarrow \ell X$ decays
- Additional help from kinematic discriminants
 - $\blacktriangleright (m_{4\ell}) \rightarrow (m_{4\ell}, K_D) \rightarrow (m_{4\ell}, K_D, V_D p_T/m_{4\ell})$
- Public document: CMS-PAS-HIG-13-002
- New from last update:
 - use of full dataset ($\mathcal{L} \sim 24.7 \ {
 m fb}^{-1}$)
 - updated kinematic discriminant variables
 - inclusion of VBF-like category to separate production modes
 - more detailed mass and spin separation studies

${ m H} ightarrow { m ZZ} ightarrow 4\ell$ (II) - $m_{4\ell}$ Distribution

・ロト ・回ト ・ヨト ・ヨト

- Good description of ZZ continuum at high masses
- $Z \rightarrow 4\ell$ peak well visible
- \blacktriangleright Relatively clean mass peak at ${\sim}126~{\rm GeV}$

$H \rightarrow ZZ \rightarrow 4\ell$ (III) - Kinematic Discriminant(s)

H(126)

background

Kinematic variable to further separate signal and background

 $\mathcal{K}_{D}(\theta^{*}, \Phi_{1}, \theta_{1}, \theta_{2}, \Phi, m_{Z_{1}}, m_{Z_{2}}) = \mathcal{P}_{sig}/(\mathcal{P}_{sig} + \mathcal{P}_{bkg})$

- Matrix Element techniques used to build the discriminant variable
- Other approaches give similar performance

$\mathrm{H} ightarrow \mathrm{ZZ} ightarrow 4\ell$ (IV) - Di-jet Analysis

- ► First analysis able to separate production mechanisms in 4ℓ events
- Two categories: tagged and untagged events
 - \blacktriangleright tagged: events with at least two reconstructed jets with $p_{\rm T}>30~{\rm GeV}$
 - untagged: otherwise
- Make use of a Fisher discriminant (V_D) in the tagged category using m_{jj} and Δη_{jj} as input variables
- ► Make use of p_T/m_{4ℓ} in the untagged category as discriminant variable

Event candidates in the tagged category are likely to be $gg \to H$ events

Events in figures within $121.5 < m_{4\ell} < 130.5~{
m GeV}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

$\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4\ell$ (V) - Significance

$\mathrm{H} ightarrow \mathrm{ZZ} ightarrow 4\ell$ (VI) - Mass Measurement

- Momentum scale, studied and tuned in several di-lepton data control samples
- Event-by-event mass uncertainty built from lepton momentum uncertainties used to increase the mass

 $m_{
m H} = 125.8 \pm 0.5 (stat.) \pm 0.2 (syst.) ~{
m GeV}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Still largely statistical limited

$H \rightarrow ZZ \rightarrow 4\ell$ (VII) - Production Mechanisms

${\rm H} \rightarrow {\rm W}^+ {\rm W}^- \rightarrow 2\ell 2\nu$ (I) - Introduction

- ▶ Two high $p_{\rm T}$ isolated leptons and moderate $E_{\rm T}^{\rm miss}$
- Large $\sigma \times BR$ and clean final state
- No mass peak is the main drawback
- Controlling the background is the key
- Categories:
 - 0-jet, 1-jet (VBF not updated yet)
 - different-flavor (DF), same-flavor (SF)
- Public document: CMS-PAS-HIG-13-003
- New from last update
 - use of full dataset
 - ▶ 7 TeV dataset has been re-analized
 - further work in understanding all relevant backgrounds

${ m H} ightarrow { m W}^+ { m W}^- ightarrow 2\ell 2 u$ (II) - Analysis Strategy

$$m_{T} = \sqrt{2p_{T}^{\ell\ell} E_{T}^{\text{miss}} \cos(\Delta \phi_{\ell\ell - E_{T}^{\text{miss}}})}$$

final state	cut-based approach	shape-based approach
DF 0-jet	counting	2D <i>m_{ℓℓ}-m_T</i>
SF 0-jet	counting	counting
DF 1-jet	counting	2D <i>m_{ℓℓ}-m_T</i>
SF 1-jet	counting	counting

Same strategy for 7 and 8 TeV datasets

$H \rightarrow W^+W^- \rightarrow 2\ell 2\nu$ (III) - Counting Analysis

・ロン ・回 と ・ 回 と ・ 回 と

3

N-1 distributions, 0-jet bin different-flavor (7+8 TeV)

Relatively large excess

$\rm H \rightarrow W^+W^- \rightarrow 2\ell 2\nu$ (IV) - Upper Limits

- Exclusion at the 95% C.L. in the mass range 128-600 GeV
- Large excess in the low mass region makes the upper limits weaker than expected

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

• When including $m_{\rm H} = 125~{\rm GeV}$ as part of the background, no significant excess is seen over the entire mass range

${ m H} ightarrow { m W}^+ { m W}^- ightarrow 2\ell 2 u$ (V) - Significance & σ/σ_{SM}

 ~4.0(5.1) σ observed (expected) significance at m_H ~ 125 GeV

 Low mass resolution gives a shallow likelihood profile as a function of m_H

${ m H} ightarrow {\cal W} {\cal W} ightarrow 2\ell 2 u$ (VI) - σ/σ_{SM} (m_{H} = 125 GeV)

• $\sigma / \sigma_{SM} = 0.76 \pm 0.21$

Consistent results among the different exclusive final states

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

$\mathbf{H} \to \gamma \gamma$

- Two high $p_{\rm T}$ isolated photons
- Small σ × BR, narrow mass peak on large continous background
- Main ingredients:
 - γ reconstruction, isolation and identification
 - energy resolution and primary vertex reconstruction
 - background modeling
- Additional categories help:
 - events with two high p_T jets with large Δη_{jj} and m_{jj}
 - events with leptons
 - events with large $E_{\mathrm{T}}^{\mathrm{miss}}$
- Public document: arXiv:1207.7235

Consistent with a boson with $m_{
m H} \sim 125~{
m GeV}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Still largely statistical limited

work in progress to update the analysis with the full dataset

$\mathrm{WH} \rightarrow \mathrm{WWW} \rightarrow 3\ell 3\nu$

- Three high p_{T} isolated leptons with moderate $E_{\mathrm{T}}^{\mathrm{miss}}$
- Z veto and anti b-tagging to reject WZ and top events
- ▶ Two approaches: cut-based and shape-based (using $\Delta R_{\ell^+\ell^-}$)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

- \blacktriangleright ~20% better performance with shape-based approach
- Public document: CMS-PAS-HIG-13-009

$\mathbf{H} \to \mathbf{Z} \gamma$

- Two leptons and one photon in the final state
- Relatively simple analysis, but very low expected signal yields
- ▶ Split in several categories to improve S/B and mass resolution

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

- No significance excess over the entire search region
- Public document: CMS-PAS-HIG-13-006

High Mass $H \rightarrow ZZ \rightarrow 4\ell/2\ell 2\tau$

- No significant excess at high mass
- data and background prediction agree in $2\ell 2\tau$ final state

(日) (四) (王) (王) (王)

▶ 130-827 GeV exclusion at 95% C.L.

Summary

- \blacktriangleright SM Scalar candidate at $m_{
 m H} \sim 126~{
 m GeV}$ growing
- So far, all measurements statistically consistent with SM Scalar prediction
- ▶ Spin ¹, parity, couplings... will profit by increased data sample
- Search for additional scalar particles has just started
- All results are still preliminary, stay tuned
 - $\blacktriangleright~H \to ZZ \to 4\ell$ & $H \to WW \to 2\ell 2\nu$ updated with full dataset
- ▶ $H \rightarrow ZZ \rightarrow 4\ell$ highlights:
 - $m_{
 m H} = 125.8 \pm 0.5$ (stat.) ± 0.2 (syst.) GeV
 - ▶ 6.7 (7.2) s.d. observed (expected) significance
 - $\sigma/\sigma_{SM} = 0.91^{+0.30}_{-0.24}$
 - μ_V (qqH, ZH, WH) = $1.0^{+2.4}_{-2.3}$
 - $\mu_F (gg \to H, t\bar{t}H) = 0.9^{+0.5}_{-0.4}$
- $H \rightarrow WW \rightarrow 2\ell 2\nu$ highlights:
 - ▶ 4.0 (5.1) s.d. observed (expected) significance
 - $\sigma/\sigma_{SM} = 0.76 \pm 0.21$

Back-Up

Production Mechanics

• Large number of available channels at $m_H \sim 125~GeV$

Electron Identification (I)

- BDT analysis
- Trained using fake electrons from W + 1 jet events

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Electron Identification (II)

Great improvement w.r.t cut-based approaches

Pile-up jets structure differs wrt regular jets:

- pile-up jets originate from several overlapping jets which merge together
- likelihood grows rapidly with high pileup
- discriminant exploits shape and tracking variables
- discrimination both inside and outside tracker acceptance

► Mostly used either to select H → bb̄ events or reject tt̄/Wt events

Techniques:

- find tracks with large impact parameter
- find set of tracks not coming from the interaction point
- find leptons within jets
- combine all together

Track Counting High Efficiency (TCHE): impact parameter significance of the second most displaced track in the jet

$\mathrm{H} \to \mathrm{ZZ} \to 4\ell$ Electron Energy Regression

 Great improvement in the energy resolution by applying an electron regression

$\mathrm{H} \to \mathrm{ZZ} \to 4\ell$ Mass Study

- \blacktriangleright Mass distribution in the mass range 50 $< m_{4\ell} < 110~{
 m GeV}$
- $\blacktriangleright~Z \rightarrow 4\ell$ used to validate mass measurement technique
- Good agreement between the measured and PDG values

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

$\mathrm{H} \to \mathrm{ZZ} \to 4\ell$ Mass Measurement

• $\sigma_{m_{\rm H}}(1D - m_{4\ell}) : 0.60 \text{ GeV}$ • $\sigma_{m_{\rm H}}(2D - m_{4\ell}/\delta m_{4\ell}) : 0.53 \text{ GeV}$ • $\sigma_{m_{\rm H}}(3D - m_{4\ell}/\delta m_{4\ell}/K_D) : 0.48 \text{ GeV}$

$X \rightarrow ZZ \rightarrow 4\ell$ Angles

Illustration of a particle X production and decay $ab \rightarrow X \rightarrow Z_1 Z_2 \rightarrow 4\ell$ with the two production angles θ^* and Φ_1 shown in the X rest frame and three decay angles θ_1 , θ_2 , and Φ shown in the Z_i rest frames

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Number of event candidates observed, compared to the mean expected background and signal rates for each final state. For the Z + X background, the estimates are based on data. The results are given integrated over the full mass measurement range for the

SM-like Higgs boson search from 100 to 1000 GeV

Channel	4 <i>e</i>	4μ	$2e2\mu$	$2\ell 2 au$
ZZ background	78.9 ± 10.9	118.9 ± 15.5	192.8 ± 24.8	27.4 ± 3.6
Z + X	6.5 ± 2.6	3.8 ± 1.5	9.9 ± 4.0	22.9 ± 7.8
All background expected	85.5 ± 11.2	122.6 ± 15.5	202.7 ± 25.2	50.3 ± 8.6
$m_{ m H}=125~{ m GeV}$	3.5 ± 0.5	6.8 ± 0.8	8.9 ± 1.0	-
$m_{ m H}=126~{ m GeV}$	3.9 ± 0.6	7.4 ± 0.9	9.8 ± 1.1	-
$m_{ m H}=500~{ m GeV}$	5.1 ± 0.6	6.8 ± 0.8	12.0 ± 1.3	3.7 ± 0.4
$m_{ m H}=800~{ m GeV}$	0.7 ± 0.1	0.9 ± 0.1	1.6 ± 0.2	0.4 ± 0.1
Observed	86	125	240	57

J ^P	production	comment	expect	obs. J ^P	obs. 0 ⁺	CLs
0-	$gg \to X$	pseudoscalar	2.6σ	3.3σ	0.5σ	0.16%
0_{h}^{+}	$gg \to X$	higher dim operators	1.7σ	1.7σ	0.0σ	8.1%
2^{+}_{mgg}	$gg \to X$	minimal couplings	1.8σ	2.7σ	0.8σ	1.5%
$2^{+}_{mq\bar{q}}$	q ar q o X	minimal couplings	1.7σ	4.0σ	1.8σ	<0.1%
1^{-1}	q ar q o X	exotic vector	2.8σ	$>$ 4.0 σ	1.4σ	<0.1%
1+	q ar q o X	exotic pseudovector	2.3σ	$>$ 4.0 σ	1.7σ	<0.1%

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

- ▶ Aim to separate 0⁺ w.r.t. several other models
- All studied alternative models disfavor by CMS data
- More details given in Mingshui's talk

${\rm H} \to {\rm ZZ} \to 4\ell ~ \mathcal{D}_{J^P}$ with a requirement $\mathcal{D}_{\rm bkg} > 0.5$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

$\mathrm{H} ightarrow \mathrm{ZZ} ightarrow 4\ell \; q = -2 \mathrm{ln} (\mathcal{L}_{J^P} / \mathcal{L}_{\mathrm{SM}})$

Six alternative hypotheses from top to bottom and left to right: $J^P=0^-,0^+_h,1^-,1^+,2^+_{mgg},2^+_{mq\bar{q}}$

${\rm H} \rightarrow {\rm W}^+ {\rm W}^- \rightarrow 2\ell 2\nu$ Cut Flow

 Good agreement between data and signal plus background prediction

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

$W^+W^- \rightarrow 2\ell 2\nu$ Preselection

▶ W⁺W⁻ background dominates in the 0-jet bin

 $\blacktriangleright~W^+W^-$ and top backgrounds dominate in the 1-jet bin

(ロ) (同) (E) (E) (E)

$W^+W^- \rightarrow 2\ell 2\nu$ Same-Sign & Top Control Regions

200

.....

m_{II} [GeV/c²]

S

33

m^{II-∉}, [GeV/c²]

40

1.5

0.5

88

7+8 ${ m TeV}$ data sample			
expected	expected/observed significance		
MC@NLO	POWHEG	MADGRAPH	
5.3/4.2	5.1/3.9	5.1/4.0	
	best fit value		
MC@NLO	POWHEG	MADGRAPH	
0.82 ± 0.24	0.74 ± 0.21	0.76 ± 0.21	

Expected and observed significance and best fit value of σ/σ_{SM} for a SM Higgs with a mass of 125 GeV for the shape-based analysis, where three different generators have been used to model the $q\bar{q} \rightarrow W^+W^-$ background process

${\rm H} ightarrow {\rm W}^+ {\rm W}^- ightarrow 2\ell 2 u$ 2D Analysis

・ロト ・回ト ・ヨト ・ヨト

3

- "Data background" 2D distributions
- Excess seen over several bins
- Statistical analysis follows

7 7	ΓeV	8 TeV 7+8 TeV			
exp./obs.	significance	exp./obs.	significance	exp./obs. s	significance
cut-based	shape-based	cut-based	shape-based	cut-based	shape-based
1.7/0.8	2.5/2.2	2.6/2.1	4.7/3.5	2.7/2.0	5.1/4.0
best fi	t value	best fi	t value	best fi	t value
cut-based	shape-based	cut-based	shape-based	cut-based	shape-based
0.46 ± 0.57	0.91 ± 0.44	0.79 ± 0.38	0.71 ± 0.22	0.71 ± 0.37	0.76 ± 0.21

Consistent results among the different analyses

$H \rightarrow W^+W^- \rightarrow 2\ell 2\nu$ Spin Hypothesis Separation (I)

- Perform hypothesis test to separate 0⁺ (SM) and 2⁺_{min} resonance with minimal couplings
- ▶ Include 0/1-jet bins different-flavor channels in 7+8 TeV
- Only $gg \rightarrow H$ mode considered for 2^+_{\min} :
 - ► SM from POWHEG & 2⁺_{min} from JHU generator
 - same initial normalization for both hypotheses (SM expectation)
 - ▶ assuming SM expectations for qqH and VH modes (tiny effect) 0⁺ case 2^+_{min} case

${\rm H} \rightarrow {\rm W}^+ {\rm W}^- \rightarrow 2\ell 2\nu$ Spin Hypothesis Separation (II)

- Perform a maximum likelihood fit to extract the best fit signal strength for each model
- Compare the best fit likelihoods to determine the consistency of each hypothesis with the data

• Test
$$q = -2 \ln(L_{2^+_{\min}}/L_{0^+})$$

 Expected hypothesis separation at the 2-σ level

-		
case	expected	observed
ass	suming σ/σ_s	$_{SM} \equiv 1$
0+	1.9	0.9
$2^+_{\rm min}$	2.4	1.3
assi	uming σ/σ_{SI}	$_{M} \approx 0.8$
0+	1.5	0.5
$2^+_{\rm min}$	1.9	1.3

${\rm H} \rightarrow {\rm W}^+ {\rm W}^- \rightarrow 2\ell 2\nu$ Upper Limits for Cut-Based Analysis

$H \to \gamma \gamma$ Flow Chart

$H \to \gamma \gamma$ Upper Limits

- Three analyses: BDT approach, cut-based approach, mass window approach
- Chosen BDT approach as default analysis due to its superior performance

$H \rightarrow \gamma \gamma \text{ Mass/Significance}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

$\mathrm{WH} \rightarrow \mathrm{WWW} \rightarrow 3\ell 3\nu$ Cut-Based Results

$H \rightarrow Z\gamma$ Categories

	e ⁺ e ⁻ γ	$\mu^+\mu^-\gamma$
	Event clas	55 1
	Photon $0 < \eta < 1.4442$	Photon $0 < \eta < 1.4442$
	Both leptons $0 < \eta < 1.4442$	Both leptons $0 < \eta < 2.1$
		and one lepton $0 < \eta < 0.9$
	$R_9 > 0.94$	$R_9 > 0.94$
Data	17%	20%
Signal	30%	34%
σ_{eff}	1.9 GeV	1.6 GeV
FWHM	4.5 GeV	3.7 GeV
	Event clas	55 2
	Photon $0 < \eta < 1.4442$	Photon $0 < \eta < 1.4442$
	Both leptons $0 < \eta < 1.4442$	Both leptons $0 < \eta < 2.1$
		and one lepton $0 < \eta < 0.9$
	$R_9 < 0.94$	$R_9 < 0.94$
Data	26%	31%
Signal	28%	31%
σ_{eff}	2.1 GeV	1.9 GeV
FWHM	5.0 GeV	4.6 GeV
	Event clas	58.3
	Photon $0 < \eta < 1.4442$	$Photon 0 < \eta < 1.4442$
	At least one lepton 1.4442 $< \eta < 2.5$	Both leptons in $ \eta > 0.9$
		or one lepton in $2.1 < \eta < 2.4$
	No requirement on R ₉	No requirement on R ₉
Data	26%	20%
Signal	23%	18%
σ_{eff}	3.1 GeV	2.1 GeV
FWHM	7.3 GeV	5.0 GeV
	Event clas	55 4
_	Photon 1.566 < \eta < 2.5	Photon 1.566 < η < 2.5
//	Both leptons $0 < \eta < 2.5$	Both leptons $0 < \eta < 2.4$
	No requirement on R ₉	No requirement on R ₉
Data	31%	29%
Signal	19%	17%
Peff	3.3 GeV	3.2 GeV
FWHM	7.8 GeV	7.5 GeV

$H \rightarrow Z\gamma$ Mass Distributions (I)

$H \rightarrow Z\gamma$ Mass Distributions (II)

$H \rightarrow Z \gamma$ All Channels Together

$\mathrm{W/ZH} \rightarrow qq'\mathrm{WW} \rightarrow qq'2\ell 2\nu$

- Two leptons, $E_{\rm T}^{\rm miss}$ and two jets in the final state
- Make use techniques from $H \rightarrow WW \rightarrow 2\ell 2\nu$ main analysis

$\mathrm{H} \to \mathrm{ZZ} \to 2\ell 2\nu$

- Two leptons from a Z boson, large $E_{\rm T}^{\rm miss}$
- ► Using m_T as final variable
- ▶ Split in several categories: electrons/muons, 0/1/2-jets

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$\mathrm{H} \to \mathrm{ZZ} \to 2q2\ell$

- ► Two leptons from a Z boson, two jets from another Z boson
- Using $m_{2q2\ell}$ as final variable
- ▶ Split in several categories: electrons/muons, 0/1/2 *b*-jets

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

$\mathrm{H} \to \mathrm{W}^+\mathrm{W}^- \to qq'\ell\nu$

- \blacktriangleright One high p_{T} isolated lepton, at least 2-jets, and large $E_{\mathrm{T}}^{\mathrm{miss}}$
- Using $m_{qq'\ell\nu}$ as final variable
- No significant excess is seen
- Public document: CMS-PAS-HIG-12-046
- Analysis in progress looking at higher masses