Lepton universality in K decays

JHEP02(2013)048 / arXiv:1211.3052

Cédric Weiland

in collaboration with A. Abada, D. Das, A.M. Teixeira and A. Vicente

Laboratoire de Physique Théorique d'Orsay, Université Paris-Sud 11, France

Rencontres de Moriond 2013 La Thuile, March 3rd, 2013

Neutrino oscillations and masses

- Neutrino oscillations:
 - solar $\nu_e \to \nu_{\rm others}$: $\theta_{12} \simeq 33^\circ$, $\Delta m_{12}^2 \simeq 7.5 \times 10^{-5} {\rm eV}^2$ (best fit)
 - atmospheric (-) (-) $\rightarrow \nu_{\tau}$: $\theta_{23} \simeq 40^{\circ} \text{ or } 50^{\circ}, \Delta m_{23}^2 \simeq 2.4 \times 10^{-3} \text{ eV}^2$ (best fit)
 - reactor $\bar{\nu}_e \to \bar{\nu}_{\rm others}$: $\theta_{13} \simeq 8.7^{\circ}$ (best fit)
 - accelerator $\nu_{\mu} \rightarrow \nu_{\text{others}}$
- Oscillations ⇒ Non-diagonal charged currents

$$\mathcal{L}_{\text{int}} = -\frac{g}{\sqrt{2}} \mathbf{U}_{\mathbf{\nu}}^{\mathbf{j}i} \bar{\ell}_{j} \gamma^{\mu} P_{L} \nu_{i} W_{\mu}^{-} + \text{h.c.}$$

• 3 mass eigenstates $\nu_i = \nu_1, \nu_2, \nu_3$ different from the interaction eigenstates $\nu_\alpha = \nu_e, \nu_\mu, \nu_\tau$

$$\nu_{\alpha} = U_{\nu}^{\alpha i} \nu_{i}$$

 $\Rightarrow U_{\nu}$ is a 3 \times 3 unitary matrix, the PMNS matrix

Leptonic kaon decays

• Focus on $K \to \ell \nu$ decays, more precisely on:

$$R_K \equiv \frac{\Gamma(K^+ \to e^+ \nu)}{\Gamma(K^+ \to \mu^+ \nu)}$$

- Well measured by the NA62 collaboration [Lazzeroni et al., 2013]: $R_{V}^{\rm exp} = (2.488 \pm 0.010) \times 10^{-5}$
- SM prediction is very precise [Finkemeier, 1996, Cirigliano and Rosell, 2007]: $R_K^{\rm SM}=(2.477\pm0.001)\times10^{-5}$
- New Physics: $R_K^{NP} = R_K^{SM} (1 + \Delta r_K)$
 - tree-level corrections are usually lepton universal
 - higher-order corrections are limited by other observables (*e.g.* $\Delta r_K \leq 10^{-3}$ in unconstrained minimal SUSY models [Fonseca et al., 2012])

Impact of singlet neutrinos

- Singlet neutrino = Interaction eigenstate with no coupling to gauge bosons (e.g. fermionic singlet in type-I seesaw)
- Modification of the charged weak current: U_{ν} becomes a $3 \times n_{\nu}$ non-unitary matrix with $n_{\nu} > 3$
- Could affect at tree-level many observables containing a $W \ell \nu$ vertex [Schrock, 1980, 1981]

Deviation from universality

• Summing over all the kinematically accessible neutrinos (from 1 to $N_{\max}^{(e)}$, $N_{\max}^{(\mu)}$ the heaviest kinematically allowed neutrino) :

$$\begin{array}{lll} R_K & = & \frac{\sum_{i=1}^{N_{\max}^{(e)}} |U_{\nu}^{1i}|^2 G^{i1}}{\sum_{k=1}^{N_{\max}^{(\mu)}} |U_{\nu}^{2k}|^2 G^{k2}} & \text{with} \\ G^{ij} & = & \left[m_K^2 (m_{\nu_i}^2 + m_{l_j}^2) - (m_{\nu_i}^2 - m_{l_j}^2)^2 \right] \left[(m_K^2 - m_{l_j}^2 - m_{\nu_i}^2)^2 - 4 m_{l_j}^2 m_{\nu_i}^2 \right]^{1/2} \end{array}$$

- In the SM, $R_K^{SM} = \frac{m_F^2}{m_\mu^2} \frac{(m_K^2 m_F^2)^2}{(m_K^2 m_\mu^2)^2}$ because $G^{i1} = G^{i1}$ and $\sum_{i=1}^{n_\nu} |U_\nu^{1i}|^2 = (U_\nu U_\nu^\dagger)_{11} = 1$
- 2 ways to deviate from universality:
 - (A) sterile neutrinos are lighter than m_K , with $m_{\nu}^{\rm active} \ll m_{\nu_{\tau}} \lesssim m_K$
 - (B) sterile neutrinos are heavier than m_K

Δr_K in the inverse seesaw model

- Inverse seesaw: low-scale seesaw mechanism
 - Add fermionic singlets
 - Smallness of the active neutrino mass related to the smallness of the Majorana mass μ_X

$$\mathcal{L}_{\text{ISS}} = \mathcal{L}_{\text{SM}} - Y_{\nu}^{ij} \bar{L}_i \tilde{H} \nu_{Rj} - M_{Rij} \bar{\nu}_{Ri} X_j - \frac{1}{2} \mu_{X_{ij}} \bar{X}_i^c X_j + \text{h.c.}$$

Scenario (B) 10⁻⁰ 10⁻² 10⁻⁴ 10⁻⁶ 10⁻⁸ 10⁻⁷ 10⁻⁶ 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10⁰

Contributions to Δr_K in the inverse seesaw as a function of

$$\tilde{\eta} = 1 - |\mathsf{Det}(\tilde{U}_{\mathsf{PMNS}})|$$

Δr_K in the inverse seesaw model

- Inverse seesaw: low-scale seesaw mechanism
 - Add fermionic singlets
 - Smallness of the active neutrino mass related to the smallness of the Majorana mass μ_X

$$\mathcal{L}_{\mathsf{ISS}} = \mathcal{L}_{\mathit{SM}} - Y_{\nu}^{ij} \bar{L}_i \tilde{H} \nu_{\mathit{R}j} - M_{\mathit{R}ij} \, \bar{\nu}_{\mathit{R}i} X_j - \frac{1}{2} \mu_{X_{ij}} \bar{X}_i^c X_j + \text{h.c.}$$

Contributions to $\Delta r_{\it K}$ in the inverse seesaw as a function of

$$\tilde{\eta} = 1 - |\mathsf{Det}(\tilde{U}_{\mathsf{PMNS}})|$$

Conclusion

- Sterile neutrinos can lead to a large violation of lepton universality at tree-level
- \bullet R_K particularly well-suited for this search
- Large deviations from the SM can be found ($\Delta r_K \sim \mathcal{O}(1)$, already excluded by NA62)
- Can appear in other leptonic or semileptonic meson decays

Backup-Constraints

- Direct sterile neutrino searches (monochromatic lines in meson decays): scenario (A) and (B)
- Non-unitarity of the leptonic mixing matrix: scenario (B)
- Lepton flavour violation: scenario (A) and (B)
- LHC SM scalar searches and electroweak precision data: scenario (B)
- Cosmological observations: scenario (A) and (B) but disappear in non-standard cosmology (e.g. low reheating temperature)

The Inverse Seesaw Mechanism

- Inverse seesaw: $M_R \simeq 1$ TeV with natural Yukawa $Y_\nu \sim \mathcal{O}(1)$ \Rightarrow cLFV is much less suppressed \rightarrow Might be testable at the LHC and future B factories (Belle II)
- Inverse seesaw \Rightarrow Consider fermionic gauge singlets ν_{Ri} (L=-1, i=1,2,3) and X_i (L=+1, i=1,2,3) [Mohapatra and Valle, 1986]

$$\mathcal{L}_{\text{ISS}} = \mathcal{L}_{SM} - Y_{\nu}^{ij} \bar{L}_i \tilde{H} \nu_{Rj} - M_{Rij} \bar{\nu}_{Ri} X_j - \frac{1}{2} \mu_{Xij} \bar{X}_i^c X_j + \text{h.c.}$$

With
$$m_D = Y_{\nu} v$$
, $\mathcal{M} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M_R \\ 0 & M_R^T & \mu_X \end{pmatrix}$

$$m_{\nu} \approx \frac{m_D^2 \mu_X}{m_D^2 + M_R^2}$$

$$m_{1,2} \approx \mp \sqrt{m_D^2 + M_R^2} + \frac{M_R^2 \mu_X}{2(m_D^2 + M_R^2)}$$

