Search for new physics using events with two same-sign isolated leptons in the final state in CMS

S. Folgueras on behalf of CMS Collaboration.

48th Rencontres de Moriond (2013), La Thuile.

Motivation

Model A2

 P_1

 P_2

Same sign dilepton events are **very rare in SM** but appear naturally in **new physics**.

We consider, two possible scenarios. **SUSY processes** are dominated by:

Strong interaction of squarks and gluinos (third-generation).

SP

lepton

b-jets

lepton

o-jets

Electroweak production of charginos and neutralinos (squarks, gluinos are too heavy to play a role in SUSY)

The cascade ends with the LSP (neutral and stable): ET^{miss}

hadronic jets

 $\tilde{t_1^*}$

 $\tilde{t_1^*}$

hadronic jets

Baseline region

We require the presence of **2** same-sign leptons with $p_T > 20$ GeV.

EWK production (EWKino)

 $E_T^{miss} > 120 \text{ GeV}$

Search regions: tightening E_T^{miss} or upper cut on number of (b) jets.

Strong production (SS+b):

 $H_T (\Sigma p_T^{jets}) > 80$ GeV, 2 identified b-jets

Search regions imposing tighter requirements on E_T^{miss} , H_T and number of (b) jets.

Background estimation

Charge misID (5-10 % of total bkg):

Electrons only. Data driven.

Probability measured in Z mass peak using SS and OS leptons in data (MC validated).

 $p_{CM} \simeq 0.02\%$ (BB) - 0.2% (EE)

Single and double 'fakes' (10-50% of tot. bkg): SC+C

Tight-to-loose method. Data driven.

Measure fake/prompt rate in an control region.

Estimate the N_{pf}, N_{ff} from N_{tt}, N_{ll}, N_{ll} in signal region.

50% syst. uncertainty assigned.

Background estimation

WZ production (10-50% of tot. bkg):

Madgraph. MC estimated.

Validate in WZ enriched region.

20% syst. uncertainty to account for differences

We prove the validity of these method in the baseline region (bkg dominated). Agreement is good so we proceed to the search regions.

	SR0	SR1	SR2	SR3	SR4	SR5	SR6	SR7	SR8
No. of jets	≥ 2	≥ 2	≥ 2	≥ 4	≥ 4	≥ 4	≥ 4	\geq 3	≥ 4
No. of btags	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	\geq 3	≥ 2
Lepton charges	+ + /	+ + /	++	+ + /	+ + /	+ + /	+ + /	+ + /	++/
E ^{miss}	>0 GeV	>30 GeV	>30 GeV	>120 GeV	> 50 GeV	>50GeV	>120 GeV	>50 GeV	>0 GeV
$\dot{H_{\mathrm{T}}}$	> 80 GeV	> 80 GeV	>80 GeV	>200 GeV	>200GeV	>320 GeV	>320 GeV	>200GeV	>320 GeV
Fake BG	25 ± 13	19 ± 10	9.6 ± 5.0	0.99 ± 0.69	4.5 ± 2.9	2.9 ± 1.7	0.7 ± 0.5	0.71 ± 0.47	4.4 ± 2.6
Charge-flip BG	3.4 ± 0.7	2.7 ± 0.5	1.4 ± 0.3	0.04 ± 0.01	0.21 ± 0.05	0.14 ± 0.03	0.04 ± 0.01	0.03 ± 0.01	0.21 ± 0.05
Rare SM BG	11.8 ± 5.9	10.5 ± 5.3	6.7 ± 3.4	1.2 ± 0.7	3.4 ± 1.8	2.7 ± 1.5	1.0 ± 0.6	0.44 ± 0.39	3.5 ± 1.9
Total BG	40 ± 14	32 ± 11	17.7 ± 6.1	2.2 ± 1.0	8.1 ± 3.4	5.7 ± 2.4	1.7 ± 0.7	1.2 ± 0.6	8.1 ± 3.3
Event yield	43	38	14	1	10	7	1	1	9
N _{UL} (13% unc.)	27.2	26.0	9.9	3.6	10.8	8.6	3.6	3.7	9.6
<i>N_{UL}</i> (20% unc.)	28.2	27.2	10.2	3.6	11.2	8.9	3.7	3.8	9.9
N _{UL} (30% unc.)	30.4	29.6	10.7	3.8	12.0	9.6	3.9	4.0	10.5

Apply our background estimation method to each search region.

No excess over SM predictions. Set exclusion limits.

1000 GeV CMS Preliminary, $\sqrt{s} = 8$ TeV, L_{int} = 10.5 fb⁻¹ **900**E Model A2 $m(\widetilde{t}_{1})$ 800 **Exclusion** $\sigma^{\text{prod}} = \sigma^{\text{NLO+NLL}} \pm 1 \sigma$ 700 gluino decay to **600**⊢ on-shell stops **500** m(̃()) = 250 GeV 400 300 $m(\tilde{\chi}^{0}) = 50 \text{ GeV}$ 200 100∟ 400 300 1100 500 600 700 800 900 1000 m(g) GeV ')

Results: SS+b

CMS-PAS-SUS-12-022

Results: EWK production of $\tilde{\chi}^\pm$ and $\tilde{\chi}^0$

					CM
	$120 < E_{\rm T}^{\rm miss} < 200 {\rm GeV}$	$120 < E_{\rm T}^{\rm miss} < 200 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	$ E_{\rm T}^{\rm miss}>200 \text{ GeV}$	
	$N_{jets} \leq 2, N_{bjets} = 0$	$N_{jets} \leq 2, N_{bjets} = 0$	-		E
		3 rd lepton veto		3 rd lepton veto	40
Double Fakes	0.05 ± 0.05	0.02 ± 0.04	-0.01 ± 0.02	0.01 ± 0.02	Ē
Single Fakes	5.59 ± 4.50	1.31 ± 1.38	3.45 ± 1.90	0.66 ± 0.78	35
Charge MisID	0.42 ± 0.03	0.40 ± 0.03	0.14 ± 0.01	0.13 ± 0.01	E E
Rare SM	4.99 ± 2.64	4.26 ± 2.30	4.70 ± 2.50	4.26 ± 2.30	30–
WZ Prod.	8.35 ± 1.65	6.18 ± 1.25	2.66 ± 0.54	2.13 ± 0.44	
Total Bkg	22.40 ± 5.45	12.16 ± 2.88	10.95 ± 3.16	7.20 ± 2.44	25
Data	14	11	11	7	

Apply our background estimation method to each search region.

No excess over SM prediction. Set limits on chargino-neutralino production.

SR exclusive. Used simultaneously on limit setting.

Thank you for your attention!

SS+b baseline

SS+b Exclusion limits

SS+b Exclusion limits

SS+b Exclusion limits

EWKino baseline region

	μμ	еµ	ee	Total
Double Fakes	0.02 ± 0.02	0.09 ± 0.07	-0.02 ± 0.04	0.09 ± 0.08
Single Fakes	6.10 ± 3.26	13.36 ± 6.82	5.52 ± 3.04	24.98 ± 12.68
Charge MisID	-	0.91 ± 0.07	0.70 ± 0.05	1.61 ± 0.08
Rare SM	5.49 ± 2.79	9.76 ± 4.90	4.44 ± 2.35	19.70 ± 9.90
WZ Prod.	3.30 ± 0.67	7.59 ± 1.53	3.62 ± 0.74	14.52 ± 2.91
Total Bkg	14.91 ± 4.28	31.71 ± 8.56	14.26 ± 3.80	60.89 ± 16.34
Observed	13	25	8	46

$E_T^{miss} > 120 \text{ GeV}$

Exclusion plots

14

Exclusion plots

tau-enriched scenario