Exploring Neutrino Physics with the Cosmic Microwave Background

Brent Follin UC Davis SPT Collaboration btfollin@ucdavis.edu

The South Pole Telescope (SPT)

Sub-millimeter Wavelength Telescope:

- 10 meter telescope (1.1' FWHM beam)
- Off-axis Gregorian optics design
- Fast scanning (up to 2 deg/sec in azimuth)
- 2" pointing accuracy

arXiv:1210.7321

A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND DAMPING TAIL FROM THE 2500-SQUARE-DEGREE SPT-SZ SURVEY

K. T. STORY,^{1,2} C. L. REICHARDT,³ Z. HOU,⁴ R. KEISLER,^{1,2} K. A. AIRD,⁵ B. A. BENSON,^{1,6} L. E. BLEEM,^{1,2} J. E. CARLSTROM,^{1,2,6,7,8} C. L. CHANG,^{1,6,8} H-M. CHO,⁹ T. M. CRAWFORD,^{1,7} A. T. CRITES,^{1,7} T. DE HAAN,¹⁰ M. A. DOBBS,¹⁰ J. DUDLEY,¹⁰ B. FOLLIN,⁴ E. M. GEORGE,³ N. W. HALVERSON,¹¹ G. P. HOLDER,¹⁰ W. L. HOLZAPFEL,³ S. HOOVER,^{1,2} J. D. HRUBES,⁵ M. JOY,¹² L. KNOX,⁴ A. T. LEE,^{3,13} E. M. LEITCH,^{1,7} M. LUEKER,¹⁴ D. LUONG-VAN,⁵ J. J. MCMAHON,¹⁵ J. MEHL,^{8,1} S. S. MEYER,^{1,2,6,7} M. MILLEA,⁴ J. J. MOHR,^{16,17,18} T. E. MONTROY,¹⁹ S. PADIN,^{1,7,14} T. PLAGGE,^{1,7} C. PRYKE,²⁰ J. E. RUHL,¹⁹ J.T. SAYRE¹⁹ K. K. SCHAFFER,^{1,6,21} L. SHAW,¹⁰ E. SHIROKOFF,³ H. G. SPIELER,¹³ Z. STANISZEWSKI,¹⁹ A. A. STARK,²² A. VAN ENGELEN,¹⁰ K. VANDERLINDE,¹⁰ J. D. VIEIRA,¹⁴ R. WILLIAMSON,^{1,7} AND O. ZAHN²³

Submitted to ApJ

arXiv:1104.2333

CONSTRAINTS ON COSMOLOGY FROM THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM OF THE 2500-SQUARE DEGREE SPT-SZ SURVEY

Z. Hou,¹ C. L. REICHARDT,² K. T. STORY,^{3,4} B. FOLLIN,¹ R. KEISLER,^{3,4} K. A. AIRD,⁵ B. A. BENSON,^{3,6} L. E. BLEEM,^{3,4} J. E. CARLSTROM,^{3,4,6,7,8} C. L. CHANG,^{3,6,8} H-M. CHO, ⁹ T. M. CRAWFORD,^{3,7} A. T. CRITES,^{3,7} T. DE HAAN,¹⁰ R. DE PUTTER,^{12,13} M. A. DOBBS,¹⁰ S. DODELSON,^{3,7,11} J. DUDLEY,¹⁰ E. M. GEORGE,² N. W. HALVERSON,¹⁴ G. P. HOLDER,¹⁰ W. L. HOLZAPFEL,² S. HOOVER,^{3,4} J. D. HRUBES,⁵ M. JOY,¹⁵ L. KNOX,¹ A. T. LEE,^{2,16} E. M. LEITCH,^{3,7} M. LUEKER,¹³ D. LUONG-VAN,⁵ J. J. MCMAHON,¹⁷ J. MEHL,^{8,3} S. S. MEYER,^{3,4,6,7} M. MILLEA,¹ J. J. MOHR,^{18,19,20} T. E. MONTROY,²¹ S. PADIN,^{3,7,13} T. PLAGGE,^{3,7} C. PRYKE,^{3,6,7,22} J. E. RUHL,²¹ J.T. SAYRE,²¹ K. K. SCHAFFER,^{3,6,23} L. SHAW,¹⁰ E. SHIROKOFF,² H. G. SPIELER,¹⁶ Z. STANISZEWSKI,²¹ A. A. STARK,²⁴ A. VAN ENGELEN,¹⁰ K. VANDERLINDE,¹⁰ J. D. VIEIRA,¹³ R. WILLIAMSON,^{3,7} AND O. ZAHN²⁵

Submitted to ApJ

Outline

- Background
- Additional neutrino-like species
- Weighing the neutrinos with cosmology
- Future results

Sound Horizon Scale

 (μK^2)

1000

100

0

NMAP7

 $l_s \equiv \frac{\pi}{\theta_s} \simeq 300$

1000

1500

2000

500

standing waves in the matter fluid when photons decouple gives characteristic distance scale on last scattering surface

$\ell(\ell+1)C_{\ell}/2\pi$ $100\theta_s = 1.0441 \pm 0.0012$

SPT, Full Survey

Sound Horizon Scale

standing waves in the matter fluid when photons decouple gives characteristic distance scale on last scattering surface

$\ell(\ell+1)C_{\ell}/2\pi$ $100\theta_s = 1.0441 \pm 0.0012$

Photon Diffusion Damping Scale

Streaming photons isotropize local volume, damping anisotropy on scales smaller than the photon diffusion scale

$$\frac{\theta_d}{\theta_s} = 0.1562 \pm 0.0011$$

Photon Diffusion **Damping Scale**

Streaming photons isotropize local volume, damping anisotropy on scales smaller than the photon diffusion scale

 $\ell(\ell+1)C_{\ell}/2\pi$

$$\frac{\theta_d}{\theta_s} = 0.1562 \pm 0.0011$$

$$H^{2}(a) = H_{0}^{2} \left(\frac{\Omega_{m}}{a^{3}} + \frac{\Omega_{\gamma}}{a^{4}} + \frac{\Omega_{\nu}}{a^{4}} + \Omega_{\Lambda} \right)$$
$$r_{s} \propto H^{-1} \qquad \frac{\theta_{d}}{\theta_{s}} \propto \sqrt{H}$$
$$r_{d} \propto H^{-1/2} \qquad \frac{\theta_{d}}{\theta_{s}} \propto \sqrt{H}$$

Cartesian view

Panel 1: Number of neutrinolike species = 2

Panel 2: Number of neutrinolike species = 6

increasing neutrino mass washes out small scale power, by increasing damping scale

-100 100 credit: Marius Millea

Number of Neutrino-like Species (Neff)

- $N_{eff} = 3.62 \pm 0.48$ (SPT+WMAP7)
- $N_{eff} = 3.71 \pm 0.35$ (SPT+WMAP7+H₀+BAO) (1.9 σ higher than 3.046)
- $N_{eff} = 2.97 \pm 0.56$ (ACT+WMAP7)
- $N_{eff} = 3.50 \pm 0.42$ (ACT+WMAP7+H₀+BAO)

Outline

- Background
- Additional neutrino-like species
- Weighing the neutrinos with cosmology
- Future results

Massive neutrinos from the CMB

Mass constraints from the CMB

BAO and H₀ measurements provide low-redshift information on the hubble rate at recent times

CMB is consistent at < 2 σ with massless neutrinos--**not very** satisfying!

Mass constraints from the CMB

BAO and **H**₀ measurements provide low-redshift information on the hubble rate at recent times

CMB is consistent at < 2 σ with massless neutrinos--**not very** satisfying!

SOLUTION: add lower redshift probes, like galaxy cluster counts

As seen by structure growth

As seen by structure growth

Hou, Reichardt et al., arXiv:1212.6267

Hints of massive neutrinos

Extra massive neutrinos

Future Experiments

- Neff: greater power spectrum sensitivity, lensing
- mass: cluster abundance measurements (SZ effect)
- Planck+BOSS (next several years)
 - -25x sky area than SPT, much lower noise than WMAP, **will resolve damping scale**
 - -Neff to within 0.14*, mass to within 120* meV
- 3rd Gen (SPT3G)+PLANCK+BOSS (2016-2019)
 - -10 times deeper than SPT, 1/10 the noise of Planck
 - -Neff to within .08*, mass to within 40* meV

*9 parameter LCDM+r+Neff+mnu cosmology

Summary

- -Number of neutrino-like species is constrained geometrically by the CMB at ~10% level
- Mass of neutrinos depends crucially on additional cosmological probes, like late-time geometry constraints (BAO, H₀) and cluster abundances.
 Current sensitivity of ~100meV/3.
- -Future experiments through better measurements of lensing effect and additional cluster probes will reach ~2-5% sensitivity on the number of species and probe the 10meV scale for neutrino mass.

Back-up Slides

(3+1) neutrino model

Archidiacono et. al: ArXiv:1302.6720

Cluster mass calibrations

Rozo et. al. arXiv:1302.5086

Neff/matter density degeneracy

sound horizon versus Neff

Hou et al. 2011; arXiv:1104.2333

Hou et al. 2012; arXiv:1104.2333

Tension between BAO/H0

Hou et al. 2012; arXiv:1104.2333

Archidiacono et. al: ArXiv:1302.6720

Effect of lensing on neutrino observables

Current constraints on lensing: Amplitude to within ~20%

SPT3G proposal: constraints on three 50meV neutrinos