

SEARCH FOR THE RARE DECAY $B_S^0 \rightarrow \mu^+\mu^-$

Michelle Prewitt – Rice University Young Scientist Forum Rencontres de Moriond - EW March 4th, 2013

Standard Model

- Flavor changing neutral current restricted
- Helicity suppressed
- $BR(B_s^0 \rightarrow \mu^+\mu^-) =$
 - \bullet (3.2 ± 0.2) x10⁻⁹
 - \bullet (3.5 ± 0.2) $\times 10^{-9}$ (lifetime corrected)*

Standard Model

- Flavor changing neutral current restricted
- Helicity suppressed
- \blacksquare BR(B⁰_s $\rightarrow \mu^+\mu^-$) =
 - (3.2 ± 0.2) x10⁻⁹
 - $(3.5 \pm 0.2) \times 10^{-9}$ (lifetime corrected)*
- Can have
 enhancement or
 suppression of BR
 with BSM physics

Signal vs Background

Dimuon final state

Analysis Outline

- Blinded analysis
 - Dimuon mass: 4.0 7.0 GeV
 - Blinded: 4.9 5.8 GeV
- Normalization mode
 - $B^{\pm} \rightarrow J/\Psi K^{\pm}$ with $J/\Psi \rightarrow \mu^{+}\mu^{-}$

- BDT
 - Use data sidebands as background for training
- Optimize cuts
- Estimate signal and background, then limits
- Results

Single Event Sensitivity

$$SES = \frac{1}{N(B^{\pm})} \times \frac{\varepsilon(B^{\pm})}{\varepsilon(B_s^{0})} \times \frac{f(b \to B^{\pm})}{f(b \to B_s^{0})} \times BR(B^{\pm} \to J/\psi K^{\pm}, J/\psi \to \mu^{+}\mu^{-})$$

- The single event sensitivity (SES) is the branching ratio at which you expect 1 event in your data sample
- lacktriangle The SES gives us the number of expected B_s events in the data
- Expect $10.4 \pm 1.1 \text{ B}_s \rightarrow \mu^+ \mu^-$ events in the blinded region of the data (before BDT cuts)

Optimizing the BDT(s)

- Use a boosted decision tree (BDT) multivariate technique
 - Data sidebands are used as background
 - B_s MC is used as signal
- Make additional requirements before BDT training
 - Cosine of 2D pointing angle > 0.95
 - Cosine of 3D pointing angle > 0.90
 - Dimuon $p_T > 5 \text{ GeV}$
- Use 2 different BDTs to discriminate against the 2 types backgrounds
 - Sequential decay
 - Double b decay

30 variables

BDT Variables

BDT Response

- BDT 1
- Sequential decay

- BDT 2
- Double b decay
- \blacksquare Coarse cuts optimization, maximize S/ $\sqrt{(S+B)}$
- Final cuts optimize the expected limit

Expected Signal and Background

- Total Expected Background of 4.3 ± 1.6
 - $4.0 \pm 1.5 \pm 0.6$ dimuon background events
 - $0.3 \pm 0.1 \text{ B}_{s}$ →KK peaking background events
- Expected SM Signal1.23 ± 0.13
- Expected 95% C.L. upper limit on the branching ratio $BR(B_s \rightarrow \mu^+ \mu^-) < 23x10^{-9}$ using modified frequentist method*

Result

- Expected
 - SM Signal:1.23 ± 0.13
 - Background:4.3 ± 1.6
 - Limit: $BR(B_s \rightarrow \mu^+ \mu^-) = 23x10^{-9}$

 Observed 3 events in the signal region setting a 95% C.L. limit on the branching fraction of

$$BR(B_s^0 \to \mu^+ \mu^-) < 15 \times 10^{-9}$$

Summary

- Searched for the decay of $B_s \rightarrow \mu^+ \mu^-$
- Set a limit on the branching ratio of 15 x 10-9
- Improved upon previous D0 results by a factor of 3.4 and a factor of 1.7 better than the $\sqrt{\mathcal{I}}$
 - Created new variables to distinguish signal from background
 - Used separate BDTs for the different types of backgrounds
- Best observed Tevatron limit

30

× 10⁻⁹ @ 95% CL

10

Backup

D0 Detector and Data

- p-pbar interactions
 - 10.4 fb⁻¹
- Silicon MicrostripTracker
- Central FiberTracker
- Calorimeter
- Muon System
 - Coverage up to $|\eta| = 2$

Current Experimental Situation

■ LCHb:

- Evidence
- BR(B $_{s}^{0} \rightarrow \mu^{+}\mu^{-}) = 3.2^{+1.5}_{-1.2} \times 10^{-8}$

CDF:

• ".... we measure $B(B^0_s \rightarrow \mu^+ \mu^-) = 1.3^{+0.9}_{-0.7} \times 10^{-8} \text{ and the}$ following bounds are set, ... $0.8 \times 10^{-9} < B(B^0_s \rightarrow \mu^+ \mu^-) < 3.4 \times 10^{-8} \text{ at ... } 95\% \text{ C.L.,}$ respectively. "

Isolation

- Tracker based isolation
- Dimuon
- Individual muons

Event Selection

- Inclusive trigger strategy
- 2 oppositely charged muons

- Muon $p_T > 1.5$ GeV and $|\eta| < 2$
- \blacksquare B p_T < 20 GeV
- \blacksquare B vertex $\chi^2/\text{dof}<14$
- B decay length significance >3
- Additionally in the normalization mode
 - K^{\pm} must have $p_T > 1.0$ GeV and $|\eta| < 2$

SES = $(3.36 \pm 0.29) \times 10^{-10}$

$$SES = \frac{1}{N(B^{\pm})} \times \frac{\varepsilon(B^{\pm})}{\varepsilon(B_s^0)} \times \frac{f(b \to B^{\pm})}{f(b \to B_s^0)} \times BR(B^{\pm} \to J/\psi K^{\pm}, J/\psi \to \mu^{+}\mu^{-})$$

- Number of B[±]
 - $\sim (87.4 \pm 3.0) \times 10^3$
- Efficiency of finding B[±] and B_s
 - $(13.0 \pm 0.5)\%$
- Fragmentation ratio
 - HFAG 2012
 - $-1/(0.263 \pm 0.017)$
- Branching ratio
 - PDG
 - $(6.01 \pm 0.21) \times 10^{-5}$

Expect 10.4 ± 1.1 $B_s \rightarrow \mu^+\mu^-$ events in the blinded region of the data (before BDT cuts)

Optimizing the BDT(s)

- Make additional requirements before BDT training
 - Cosine of 2D pointing angle > 0.95
 - Cosine of 3D pointing angle > 0.90
 - Dimuon $p_T > 5 \text{ GeV}$

Cuts reduce background by 96% and keep 78% signal.

Other Backgrounds

- B_s→KK peaking background
 - K decays in flight after the tracker faking a good muon
 - $K \rightarrow \mu$ fake rate determined from $B \rightarrow \mu D^0 X$ with $D^0 \rightarrow K\pi$
 - Other B_s→hh contributions found to be negligible due to low fake rate and lower branching fractions
- \blacksquare $B_d \rightarrow \mu\mu$
 - Mass resolution not sensitive enough to distinguish
 B_d from B_s, but assume negligible B_d contribution
 - SM BR($B_d \rightarrow \mu \mu$) = (1.1 ± 0.1) x10⁻¹⁰

BDT Variables

- \$ptmumu\$: \$p_T\$ of the dimuon system.
- scxymumu\$: Cosine of the dimuon pointing angle, calculated using information only in the transverse plane.
- \$c3dmumu\$: Cosine of the dimuon pointing angle using 3D information.
- \$\text{lxymumu\$: Dimuon decay length, calculated using information only in the transverse plane.}
- \$13dmumu\$: Dimuon decay length using 3D information.
- sigxymumu\$: Dimuon decay length significance.
- \$\square\$ \\$ip1\text{mumu\$: Dimuon impact parameter, calculated using information only in the transverse plane.
- \$ipsig1mumu\$: Dimuon impact parameter significance.
- schi2mumu\$: \$\chi^2\$ of the dimuon vertex.
- \$\square of the dimuon momentum component perpendicular to the line from the primary vertex to the dimuon vertex, calculated in the transverse plane.
- \$pt3dsqmumu\$: Same as \$ptxysqmumu\$ excepted calculated using 3D information.
- \blacksquare \$iso\$: Standard isolation variable \$I=p_T(\mu \mu)\$/[\$p_T(cone)\$+\$p_T(\mu \mu)]\$ in R~=~1 cone.
- \$\operatorname{\text{\subset}}\$ \$\sisomu1\$: Same as \$\siso\$, but defined with respect to the leading muon rather than the dimuon direction.
- \$isomu2\$: Isolation defined with respect to the trailing muon direction.
- \$isosum\$: Sum of the individual muon isolation. \$isomu1+isomu2\$
- \$ptmu1\$: \$p_T\$ of the leading muon.
- \$ptmu2\$: \$p_T\$ of the trailing muon.
- \$ip1mu1\$: Leading muon impact parameter.
- \$ip1mu2\$: Trailing muon impact parameter.
- \$ipsig1mu1\$: Leading muon impact parameter significance.
- \$ipsig1mu2\$: Trailing muon impact parameter significance.
- \$deltaphi\$: Difference in azimuthal angles between the two muons.
- \$ipsigless\$: Smaller of the two impact parameters of the two muons.
- scxyNew\$: Cosine of the pointing angle. %need to look up
- \$mTer\$: Invariant mass of the tracks associated with an additional vertex that does not include either muon.
- \$mTermu1\$: Invariant mass of the tracks associated with an additional vertex that includes the leading muon.
- \$mTermu2\$: Invariant mass of the tracks associated with an additional vertex that includes the trailing muon
 - \$chi2mu1iso\$: \$\chi^2\$ of the vertex of tracks with the leading muon.
 - \$chi2mu2iso\$: \$\chi^2\$ of the vertex of tracks with the trailing muon. \$\frac{1}{2} \frac{1}{2} \frac{

