

Rencontres de Moriond

Robust determination of the scalar boson couplings

O. Éboli Universidade de São Paulo

T. Corbett, J Gonzalez-Fraile and C. Gonzalez-Garcia (arXiv:1207.1344 and 1211.4580)

Direct study EWSB after ~50 years

SUST

-newly discovered state candidate to be SMS

spin? CP? couplings?

extra dimensions

new ideas

Our goal: study the couplings of the new state using a bottom-up approach and largest possible dataset

Composite models

Reasonable assumptions

• There is a mass gap between SM and NP

• one new state: CP even and spin 0

• • •

- new state belongs to SU(2) doublet Φ
- $SU(2) \times U(1)$ realized linearly as in the SM
- \bullet Building blocks of $\mathcal{L}_{\rm eff}$

$$\Phi \qquad D_{\mu}\Phi$$

$$\hat{B}_{\mu\nu} = i \frac{g'}{2} B_{\mu\nu} \quad \hat{W}_{\mu\nu} = i \frac{g}{2} \sigma^a W^a_{\mu\nu} \quad G^a_{\mu\nu}$$

• • •

• • •

• To measure departures of the SM predictions we write

• There are 59 "independent" dimension-six operators [Buchmuller & Wyler; Grzadkowski et al. arXiv: 1008.4884]

- There is a freedom in choosing the operator basis
- We picked the basis to make better use of all available data

• Operators de modify the SMS interaction to gauge bosons

VVV

HVV

•

 $\Delta S \propto f_{BW}$

• operators containing stress tensors and SMS covariant derivatives

$$\mathcal{O}_B = (D_\mu \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_\nu \Phi) , \quad \mathcal{O}_W = (D_\mu \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_\nu \Phi)$$

$$HVV ; \quad VVV ; \quad VVVV \cdots$$

operators involving doublets and their derivatives

$$H = h \left[1 + \frac{v^2}{2\Lambda^2} (f_{\Phi,1} + 2f_{\Phi,2} + f_{\Phi,4}) \right]^{1/2}$$

rescale of SM couplings + new ones

• A partial list of operators is

 $\begin{aligned} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} \ , \qquad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ , \qquad \mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \ , \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ , \qquad \mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \ , \qquad \mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \ , \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \Phi^{\dagger} (D^{\mu} \Phi) \ , \qquad \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) \ , \qquad \mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi) \ , \end{aligned}$

but they are not independent when we consider fermionic operators

• The SMS couplings to fermions are modified by

$$\begin{array}{ll} \mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_{i}\Phi e_{R_{j}}) & \mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(i\vec{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}) & \mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger}(i\vec{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}\sigma_{a}L_{j}) \\ \mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\Phi d_{R_{j}}) & \mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(i\vec{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}) & \mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger}(i\vec{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}\sigma_{a}Q_{j}) \\ \mathcal{O}_{d\Phi,ij}^{(1)} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\Phi d_{R_{j}}) & \mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(i\vec{D}_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}) & \mathcal{O}_{\Phi d,ij}^{(1)} = \Phi^{\dagger}(i\vec{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ \mathcal{O}_{\Phi d,ij}^{(1)} = \Phi^{\dagger}(i\vec{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}) & \mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(i\vec{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ \mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(i\vec{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) & \mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(i\vec{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ \mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(i\vec{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) & \mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(i\vec{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) & \mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(i\vec{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\Phi^{\mu}d_{R_{j}}) \\ \mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(i\vec{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\Phi^{\mu}d_{R_{j}}) & \mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(i\vec{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\Phi^{\mu}d_{R_{j}}) & \mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(i\vec{D}_{\mu}\Phi^{\mu}d_{R_{j}}) & \mathcal{O}_{\Phi ud,ij}^{(1)} = \tilde{\Phi}^{\dagger}(i\vec{D}_$$

• all these operators containing the SMS are NOT independent when we consider the equations of motion

• The right of choice

- Idea: operators related by EOM lead to the same S matrix elements [Politzer; Georgi; Artz; Simma]
- The EOM lead to the relations

 $2\mathcal{O}_{\Phi,2} - 2\mathcal{O}_{\Phi,4} = \sum_{ij} \left(y_{ij}^e \mathcal{O}_{e\Phi,ij} + y_{ij}^u \mathcal{O}_{u\Phi,ij} + y_{ij}^d (\mathcal{O}_{d\Phi,ij})^\dagger + \text{h.c.} \right)$ $2\mathcal{O}_{\mathcal{B}} + \mathcal{O}_{WB} + \mathcal{O}_{BB} + g'^2 \left(\mathcal{O}_{\Phi,1} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = \frac{g'^2}{2} \sum_i \left(\frac{1}{2}\mathcal{O}_{\Phi L,ii}^{(1)} - \frac{1}{6}\mathcal{O}_{\Phi Q,ii}^{(1)} + \mathcal{O}_{\Phi e,ii}^{(1)} - \frac{2}{3}\mathcal{O}_{\Phi u,ii}^{(1)} + \frac{1}{3}\mathcal{O}_{\Phi d,ii}^{(1)} \right)$ $2\mathcal{O}_W + \mathcal{O}_{WB} + \mathcal{O}_{WW} + g^2 \left(\mathcal{O}_{\Phi,4} - \frac{1}{2}\mathcal{O}_{\Phi,2} \right) = -\frac{g^2}{4} \sum_i \left(\mathcal{O}_{\Phi L,ii}^{(3)} + \mathcal{O}_{\Phi Q,ii}^{(3)} \right)$

with this we can further eliminate 3 operators

 Very large operator basis we must choose it to take full advantage of the available data

Avoid theoretical prejudice (tree vs loop, etc)

Care is needed in the interpretation

strongly constrained operators should be kept

Z pole physics, LEP2, atomic parity violation, etc constrain

EWPT bounds: $\alpha \Delta S = -\hat{e}^2 \frac{v}{\Lambda^2} f_{BW}$ and $\alpha \Delta T = -\frac{1}{2} \frac{v}{\Lambda^2} f_{\Phi,1}$

FCNC constrains the off-diagonal elements of

$$\mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_i\Phi e_{R_j}) \quad \mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\tilde{\Phi} u_{R_j}) \quad \mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_i\Phi d_{R_j})$$

$$\mathcal{L}_{eff}^{Hee} = \sum_{i,j} \frac{f_{e\Phi,ij}}{\Lambda^2} \mathcal{O}_{e\Phi,ij} + \text{h.c.} \implies$$
$$\mathcal{L}^{Hee} = \sum_{i,j} g_{Hij}^e h \ \bar{e}_{Li} e_{Rj} + \text{h.c. with} \ g_{Hij}^e = -\frac{m_i^e}{v} \delta_{ij} + \frac{v^2}{\sqrt{2}\Lambda^2} (f_{e\Phi})_{ij}$$

The operators
$$(\mathcal{O}_B \ , \ \mathcal{O}_W)$$
 modify the TGV
 $\mathcal{O}_W = (D_\mu \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_\nu \Phi) \ , \qquad \mathcal{O}_B = (D_\mu \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_\nu \Phi)$
 $\mathcal{L}_{WWV} = -ig_{WWV} \left\{ g_1^V \Big(W^+_{\mu\nu} W^{-\mu} V^{\nu} - W^+_{\mu} V_{\nu} W^{-\mu\nu} \Big) + \kappa_V W^+_{\mu} W^-_{\nu} V^{\mu\nu} \right\} + \dots$
[Hagiwara, Hikasa, Peccei, Zeppenfeld]

[eppenfeld] Tagi wara, • Ľ

with

$$\Delta g_1^Z = g_1^Z - 1 = \frac{g^2 v^2}{8c^2 \Lambda^2} f_W$$
$$\Delta \kappa_\gamma = \kappa_\gamma - 1 = \frac{g^2 v^2}{8\Lambda^2} \left(f_W + f_B \right)$$
$$\Delta \kappa_Z = \kappa_Z - 1 = \frac{g^2 v^2}{8c^2 \Lambda^2} \left(c^2 f_W - s^2 f_B \right)$$

there are data on that.

• we choose the basis:

 $\left\{\mathcal{O}_{GG} \ , \ \mathcal{O}_{BW} \ , \ \mathcal{O}_{WW} \ , \ \mathcal{O}_{W} \ , \ \mathcal{O}_{B} \ , \ \mathcal{O}_{\Phi,1} \ , \ \mathcal{O}_{f\Phi} \ , \ \mathcal{O}_{\Phi f}^{(1)} \ , \ \mathcal{O}_{\Phi f}^{(3)}\right\}$

• we choose the basis:

$$\left\{\mathcal{O}_{GG} , \mathcal{O}_{RW} , \mathcal{O}_{WW} , \mathcal{O}_{W} , \mathcal{O}_{B} , \mathcal{O}_{S,1} , \mathcal{O}_{f\Phi} , \mathcal{O}_{Af} \right\}$$

• we choose the basis:

$$\left\{\mathcal{O}_{GG} , \mathcal{O}_{WW} , \mathcal{O}_{WW} , \mathcal{O}_{W} , \mathcal{O}_{B} , \mathcal{O}_{I} , \mathcal{O}_{I} , \mathcal{O}_{I} \right\}$$

after discarding the constrained operators => 13: too many!

• 9 fermions:
$$\mathcal{O}_{e\Phi,jj}$$
 , $\mathcal{O}_{u\Phi,jj}$, $\mathcal{O}_{d\Phi,jj}$

- neglecting the effects of couplings to first two generations
- due to small statistics we trade $f_{top} \rightarrow f_g$ and f_{WW}
- gauge bosons: \mathcal{O}_W , \mathcal{O}_B , \mathcal{O}_{WW} , \mathcal{O}_{GG}

• Summarizing:

coefficients related by gauge invariance

supplemented by shifts in the Yukawa couplings (3rd family)

nice feature: dimension-six operators lead to relations between anomalous couplings

• Summarizing:

coefficients related by gauge invariance

supplemented by shifts in the Yukawa couplings (3rd family)

$$\mathcal{L}_{eff} = -\frac{\alpha_s v}{8\pi} \frac{f_g}{\Lambda^2} \mathcal{O}_{GG} + \frac{f_{WW}}{\Lambda^2} \mathcal{O}_{WW} + \frac{f_W}{\Lambda^2} \mathcal{O}_W + \frac{f_B}{\Lambda^2} \mathcal{O}_B + \frac{f_{bot}}{\Lambda^2} \mathcal{O}_{d\Phi,33} + \frac{f_\tau}{\Lambda^2} \mathcal{O}_{e\Phi,33}$$

Fitting procedure

- Inputs: signal strength for the different channels μ =
- using all available data [outdate since today]

The statistical analyses were done using

$$\chi^2 = \min_{\xi_{pull}} \sum_j \frac{(\mu_j - \mu_j^{\exp})^2}{\sigma_j^2} + \sum_{pull} \left(\frac{\xi_{pull}}{\sigma_{pull}}\right)^2$$

 $rac{\sigma_{obs}}{\sigma_{SM}}$

• we also used that

EWPT:

$$\Delta S_{PDG} = 0.00 \pm 0.10 \qquad \Delta T_{PDG} = 0.02 \pm 0.11 \qquad \Delta U_{PDG} = 0.03 \pm 0.09$$

$$\rho = \begin{pmatrix} 1 & 0.89 & -0.55 \\ 0.89 & 1 & -0.8 \\ -0.55 & -0.8 & 1 \end{pmatrix}$$

TGV bounds:

g_1^Z	κ_γ	κ_Z	Ref	Asummption
$0.984^{+0.022}_{-0.019}$	$0.973^{+0.044}_{-0.045}$	$0.924^{+0.059}_{-0.056}$	PDG	1-par fit (others SM)
$1.004\substack{+0.024\\-0.025}$	$0.984^{+0.049}_{-0.049}$	GI: $\kappa_Z = g_1^Z - (\kappa_\gamma - 1)s^2/c^2$	LEPEWWG	2-par fit with GI, $\rho = 0.11$

Results

- First scenario: $(f_{GG}, f_{WW}, f_W, f_B, f_{bot} = 0, f_{\tau} = 0)$
- Second scenario: $(f_{GG}$, f_{WW} , f_W , f_B , f_{bot} , $f_{ au}=0)$

interference with SM contribution leads to (near) degeneracy

Wednesday, March 6, 13

17

cross sections and branching ratios

interesting correlations


```
due to the diphoton channel
```

Discussion

 we can constrain SMS couplings and TGV as well.
 both measurements can profit from the basis choice [Campos, Gonzalez-Garcia, Novaes]

90% CL allowed regions

updated results at <u>http://hep.if.usp.br/Higgs</u>

BACKUP SLIDES

• The HVV new interactions are

$$\mathcal{L}_{\text{eff}}^{\text{HVV}} = g_{Hgg} H G^{a}_{\mu\nu} G^{a\mu\nu} + g_{H\gamma\gamma} H A_{\mu\nu} A^{\mu\nu} + g^{(1)}_{HZ\gamma} A_{\mu\nu} Z^{\mu} \partial^{\nu} H + g^{(2)}_{HZ\gamma} H A_{\mu\nu} Z^{\mu\nu} + g^{(1)}_{HZZ} Z_{\mu\nu} Z^{\mu} \partial^{\nu} H + g^{(2)}_{HZZ} H Z_{\mu\nu} Z^{\mu\nu} + g^{(3)}_{HZZ} H Z_{\mu} Z^{\mu} + g^{(1)}_{HWW} (W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} H + \text{h.c.}) + g^{(2)}_{HWW} H W^{+}_{\mu\nu} W^{-\mu\nu} + g^{(3)}_{HWW} H W^{+}_{\mu} W^{-\mu}$$

with

$$g_{Hgg} = \frac{f_{GG}v}{\Lambda^2} \equiv -\frac{\alpha_s}{8\pi} \frac{f_g v}{\Lambda^2} \qquad g_{HZZ}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2}\right) \frac{c^2 f_W + s^2 f_B}{2c^2}$$

$$g_{H\gamma\gamma} = -\left(\frac{g^2 v s^2}{2\Lambda^2}\right) \frac{f_W + f_W w}{2} \qquad g_{HZZ}^{(2)} = -\left(\frac{g^2 v}{2\Lambda^2}\right) \frac{s^4 f_W + c^4 f_W w}{2c^2}$$

$$g_{HZ\gamma}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2}\right) \frac{s(f_W - f_B)}{2c} \qquad g_{HWW}^{(1)} = \left(\frac{g^2 v}{2\Lambda^2}\right) \frac{f_W}{2}$$

$$g_{HZ\gamma}^{(2)} = \left(\frac{g^2 v}{2\Lambda^2}\right) \frac{s[2s^2 f_W - 2c^2 f_W w]}{2c} \qquad g_{HWW}^{(2)} = -\left(\frac{g^2 v}{2\Lambda^2}\right) f_W w$$

interesting correlations

effect of the bottom Yukawa on correlations

• To evaluate cross sections we write $\sigma_Y^{ano} = \left| \frac{\sigma_Y^{SM}}{\sigma_Y^{SM}} \right|_{tree} \left| \sigma_Y^{SM} \right|_{soa}$

FevnRules/MadG

- For widths $\Gamma^{ano}(h \to X) = \frac{\Gamma^{ano}(h \to X)}{\Gamma^{SM}(h \to X)}\Big|_{tree} \Gamma^{SM}(h \to X)\Big|_{soa}$
- use all available information

$\mu_{F} = \frac{\epsilon_{gg}^{F} \sigma_{gg}^{ano}(1+\xi_{g}) + \epsilon_{VBF}^{F} \sigma_{VBF}^{ano} + \epsilon_{WH}^{F} \sigma_{WH}^{ano} + \epsilon_{ZH}^{F} \sigma_{ZH}^{ano} + \epsilon_{t\bar{t}H}^{F} \sigma_{t\bar{t}H}^{ano}}{\epsilon_{aa}^{F} \sigma_{aa}^{SM} + \epsilon_{VBF}^{F} \sigma_{VBF}^{SM} + \epsilon_{WH}^{F} \sigma_{WH}^{SM} + \epsilon_{ZH}^{F} \sigma_{ZH}^{SM} + \epsilon_{t\bar{t}H}^{F} \sigma_{t\bar{t}H}^{SM}} \otimes \frac{\operatorname{Br}^{ano}[h \to F]}{\operatorname{Br}^{SM}[h \to F]}$

The statistical analyses were done using

$$\chi^2 = \min_{\xi_{pull}} \sum_j \frac{(\mu_j - \mu_j^{\exp})^2}{\sigma_j^2} + \sum_{pull} \left(\frac{\xi_{pull}}{\sigma_{pull}}\right)^2$$

we neglected correlation between the different channels

EWPT: there anomalous contributions to the oblique parameters [Hagiwara, et al.; Alam, Dawson, Szalapski]

$$\begin{split} \alpha \Delta S &= \left(-\hat{e}^2 \frac{v^2}{\Lambda^2} f_{BW} - \frac{1}{6} \frac{\hat{e}^2}{16\pi^2} \left\{ 3(f_W + f_B) \frac{m_H^2}{\Lambda^2} \log\left(\frac{\Lambda^2}{m_H^2}\right) + 2(f_{\Phi,2} - f_{\Phi,4}) \frac{v^2}{\Lambda^2} \log\left(\frac{\Lambda^2}{m_H^2}\right) \right. \\ &+ 2\left[(5\hat{e}^2 - 2)f_W - (5\hat{e}^2 - 3)f_B \right] \frac{m_Z^2}{\Lambda^2} \log\left(\frac{\Lambda^2}{m_H^2}\right) \\ &- \left[(22\hat{e}^2 - 1)f_W - (30\hat{e}^2 + 1)f_B \right] \frac{m_Z^2}{\Lambda^2} \log\left(\frac{\Lambda^2}{m_Z^2}\right) \\ &- 24(\hat{e}^2 f_{WW} + \hat{s}^2 f_{BB}) \frac{m_Z^2}{\Lambda^2} \log\left(\frac{\Lambda^2}{m_H^2}\right) \right\}, \\ \alpha \Delta T &= \left(-\frac{1}{2} \frac{v^2}{\Lambda^2} f_{\Phi,1} \right) - \frac{3}{4\hat{e}^2} \frac{\hat{e}^2}{16\pi^2} \left\{ f_B \frac{m_H^2}{\Lambda^2} \log\left(\frac{\Lambda^2}{m_H^2}\right) - (f_{\Phi,2} - f_{\Phi,4}) \frac{v^2}{\Lambda^2} \log\left(\frac{\Lambda^2}{m_H^2}\right) \right\} \\ &+ (\hat{e}^2 f_W + f_B) \frac{m_Z^2}{\Lambda^2} \log\left(\frac{\Lambda^2}{m_H^2}\right) \\ &+ \left[2\hat{e}^2 f_W + (3\hat{e}^2 - 1)f_B \right] \frac{m_Z^2}{\Lambda^2} \log\left(\frac{\Lambda^2}{m_H^2}\right) \\ &+ \left(2f_W - 5f_B \right) \frac{m_Z^2}{\Lambda^2} \log\left(\frac{\Lambda^2}{m_Z^2}\right) \right\}, \end{split}$$

• Summarizing the results:

	F	it with $f_{bot} = f_{\tau} = 0$	Fit with f_{bot} and f_{τ}	
	Best fit	$90\%~{\rm CL}$ allowed range	Best fit	90% CL allowed range
$f_g/\Lambda^2 \; ({\rm TeV}^{-2})$	1.3, 21.4	$[-1.2, 3.5] \cup [19, 24]$	1.3, 21.4	$[-21, 4.8] \cup [18, 44]$
$f_{WW}/\Lambda^2 \ ({\rm TeV}^{-2})$	-0.43	$[-0.80, -0.10] \cup [2.85, 3.55]$	-0.39	$[-0.80, 0] \cup [2.85, 3.65]$
$f_W/\Lambda^2 ~({\rm TeV^{-2}})$	1.43	[-7.0, 10]	0.42	[-7.4, 7.6]
$f_B/\Lambda^2 \; ({\rm TeV}^{-2})$	-8.4	[-30, 13]	0.42	[-7.4, 7.6]
$f_{bot}/\Lambda^2 \ ({\rm TeV^{-2}})$			0.00, 0.90	$[-1.2, 0.20] \cup [0.70, 2.1]$
$f_{\tau}/\Lambda^2 \; ({\rm TeV^{-2}})$			0.02,0.32	$[-0.07, 0.13] \cup [0.2, 0.40]$
$BR^{ano}_{\gamma\gamma}/BR^{SM}_{\gamma\gamma}$	1.75	[1.15, 2.62]	1.70	[0.20, 3.00]
$BR^{ano}_{WW}/BR^{SM}_{WW}$	0.97	[0.75, 1.14]	1.02	[0.11, 1.94]
$BR^{ano}_{ZZ}/BR^{SM}_{ZZ}$	1.13	[0.78, 1.45]	1.03	[0.11, 1.96]
$BR^{ano}_{bb}/BR^{SM}_{bb}$	1.01	[0.84, 1.06]	1.04	[0.53, 1.53]
$BR^{ano}_{ au au}/BR^{SM}_{ au au}$	1.01	[0.84, 1.06]	0.85	[0.05, 2.25]
$\sigma_{gg}^{ano}/\sigma_{gg}^{SM}$	0.79	[0.47, 1.23]	0.79	[0.35, 8]
$\sigma_{VBF}^{ano}/\sigma_{VBF}^{SM}$	1.02	[0.92, 1.21]	1.00	[0.91, 1.13]
$\sigma_{VH}^{ano}/\sigma_{VH}^{SM}$	0.98	[0.58, 1.40]	1.02	[0.57, 1.49]

SMS (LHC+Tevatron) + TGV

Collider +TGV + EWPD

SMS production mechanisms and cross sections

WW, ZZ fusion

• 4th July, 2012 marks the dawning of new era

- •48 years between EWSB theory and discovery
- **964: theory** [Englert&Brout; Higgs; Guralnik&Hagen&Kibble]
- signal in many channels AA, ZZ, WW... as for the SMS

