Rencontres de Moriond

Robust determination of the scalar boson couplings

O. Éboli
Universidade de São Paulo

T. Corbett, J Gonzalez-Fraile and C. Gonzalez-Garcia (arXiv:I207.I344 and I2II.4580)

Direct study EWSB after ~ 50 years
candidate to be SMS

CP?

Our goal: study the couplings of the new state using a bottom-up approach and largest possible dataset
路

Reasonable assumptions

- There is a mass gap between SM and NP
- one new state: CP even and spin 0

New Physics

- new state belongs to $\operatorname{SU}(2)$ doublet Φ
- $\mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})$ realized linearly as in the SM
- Building blocks of $\mathcal{L}_{\text {eff }}$

$$
\begin{array}{ll}
\Phi & D_{\mu} \Phi \\
\hat{B}_{\mu \nu}=i \frac{g^{\prime}}{2} B_{\mu \nu} & \hat{W}_{\mu \nu}=i \frac{g}{2} \sigma^{a} W_{\mu \nu}^{a} \quad G_{\mu \nu}^{a}
\end{array}
$$

- To measure departures of the SM predictions we write

- There are 59 "independent" dimension-six operators
- There is a freedom in choosing the operator basis
- We picked the basis to make better use of all available data
- Operators de modify the SMS interaction to gauge bosons

$$
\mathcal{O}_{G G}=\Phi^{\dagger} \Phi G_{\mu \nu}^{a} G^{a \mu \nu},
$$

$$
\mathcal{O}_{B B}=\Phi^{\dagger} \hat{B}_{\mu \nu} \hat{B}^{\mu \nu} \Phi, \quad \mathcal{O}_{B W}=\Phi^{\dagger} \hat{B}_{\mu \nu} \hat{W}^{\mu \nu} \Phi, \quad \mathcal{O}_{W W}=\Phi^{\dagger} \hat{W}_{\mu \nu} \hat{W}^{\mu \nu} \Phi
$$

$\Delta S \propto f_{B W}$

- operators containing stress tensors and SMS covariant derivatives

$$
\mathcal{O}_{B}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{B}^{\mu \nu}\left(D_{\nu} \Phi\right), \quad \mathcal{O}_{W}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}^{\mu \nu}\left(D_{\nu} \Phi\right)
$$

- operators involving doublets and their derivatives

$$
\mathcal{O}_{\Phi, 1}=\left(D_{\mu} \Phi\right)^{\dagger} \Phi \Phi^{\dagger}\left(D^{\mu} \Phi\right) \quad, \quad \mathcal{O}_{\Phi, 2}=\frac{1}{2} \partial^{\mu}\left(\Phi^{\dagger} \Phi\right) \partial_{\mu}\left(\Phi^{\dagger} \Phi\right) \quad, \quad \mathcal{O}_{\Phi, 4}=\left(D_{\mu} \Phi\right)^{\dagger}\left(D^{\mu} \Phi\right)\left(\Phi^{\dagger} \Phi\right)
$$

field redefinition is needed

$$
H=h\left[1+\frac{v^{2}}{2 \Lambda^{2}}\left(f_{\Phi, 1}+2 f_{\Phi, 2}+f_{\Phi, 4}\right]^{1 / 2}\right.
$$

rescale of SM couplings + new ones

- A partial list of operators is

$$
\begin{array}{rll}
\mathcal{O}_{G G}=\Phi^{\dagger} \Phi G_{\mu \nu}^{a} G^{a \mu \nu}, & \mathcal{O}_{W W}=\Phi^{\dagger} \hat{W}_{\mu \nu} \hat{W}^{\mu \nu} \Phi, & \mathcal{O}_{B B}=\Phi^{\dagger} \hat{B}_{\mu \nu} \hat{B}^{\mu \nu} \Phi \\
\mathcal{O}_{B W}=\Phi^{\dagger} \hat{B}_{\mu \nu} \hat{W}^{\mu \nu} \Phi, & \mathcal{O}_{W}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}^{\mu \nu}\left(D_{\nu} \Phi\right), & \mathcal{O}_{B}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{B}^{\mu \nu}\left(D_{\nu} \Phi\right), \\
\mathcal{O}_{\Phi, 1}=\left(D_{\mu} \Phi\right)^{\dagger} \Phi \Phi^{\dagger}\left(D^{\mu} \Phi\right), & \mathcal{O}_{\Phi, 2}=\frac{1}{2} \partial^{\mu}\left(\Phi^{\dagger} \Phi\right) \partial_{\mu}\left(\Phi^{\dagger} \Phi\right), & \mathcal{O}_{\Phi, 4}=\left(D_{\mu} \Phi\right)^{\dagger}\left(D^{\mu} \Phi\right)\left(\Phi^{\dagger} \Phi\right) \\
\text { but they are not independent when } \\
\text { We consider fermionic operators }
\end{array}
$$

- The SMS couplings to fermions are modified by

> these modify the couplings of gauge bosons to fermions

- all these operators containing the SMS are NOT independent when we consider the equations of motion

- The right of choice

- Idea: operators related by EOM lead to the same S matrix elements [Politzer; Georgi;Artz; Simma]
- The EOM lead to the relations

$$
\begin{aligned}
& 2 \mathcal{O}_{\Phi, 2}-2 \mathcal{O}_{\Phi, 4}=\sum_{i j}\left(y_{i j}^{e} \mathcal{O}_{e \Phi, i j}+y_{i j}^{u} \mathcal{O}_{u \Phi, i j}+y_{i j}^{d}\left(\mathcal{O}_{d \Phi, i j}\right)^{\dagger}+\text { h.c. }\right) \\
& 2 \mathcal{O}_{\mathcal{B}}+\mathcal{O}_{W B}+\mathcal{O}_{B B}+g^{\prime 2}\left(\mathcal{O}_{\Phi, 1}-\frac{1}{2} \mathcal{O}_{\Phi, 2}\right)=\frac{g^{\prime 2}}{2} \sum_{i}\left(\frac{1}{2} \mathcal{O}_{\Phi L, i i}^{(1)}-\frac{1}{6} \mathcal{O}_{\Phi Q, i i}^{(1)}+\mathcal{O}_{\Phi e, i i}^{(1)}-\frac{2}{3} \mathcal{O}_{\Phi u, i i}^{(1)}+\frac{1}{3} \mathcal{O}_{\Phi d, i i}^{(1)}\right) \\
& 2 \mathcal{O}_{W}+\mathcal{O}_{W B}+\mathcal{O}_{W W}+g^{2}\left(\mathcal{O}_{\Phi, 4}-\frac{1}{2} \mathcal{O}_{\Phi, 2}\right)=-\frac{g^{2}}{4} \sum_{i}\left(\mathcal{O}_{\Phi L, i i}^{(3)}+\mathcal{O}_{\Phi Q, i i}^{(3)}\right)
\end{aligned}
$$

with this we can further eliminate 3 operators

- Very large operator basis \Rightarrow we must choose it to take full advantage of the available data
- Avoid theoretical prejudice (tree vs loop, etc)
- Care is needed in the interpretation
- strongly constrained operators should be kept

Z pole physics, LEP2, atomic parity violation, etc constrain

Z \longrightarrow

$$
\begin{aligned}
& \longleftarrow \text { Z,W } \\
& \mathcal{O}_{\Phi Q, i j}^{(1)}=\Phi^{\dagger}\left(\stackrel{\leftrightarrow}{\overleftrightarrow{D}}{ }_{\mu} \Phi\right)\left(\bar{Q}_{i} \gamma^{\mu} Q_{j}\right) \quad \mathcal{O}_{\Phi Q, i j}^{(3)}=\Phi^{\dagger}\left(i{\stackrel{D}{D^{a}}}^{a} \Phi\right)\left(\bar{Q}_{i} \gamma^{\mu} \sigma_{a} Q_{j}\right) \\
& \mathcal{O}_{\Phi e, i j}^{(1)}=\Phi^{\dagger}\left(\overleftrightarrow{D}_{\mu} \Phi\right)\left(\bar{e}_{R_{i}} \gamma^{\mu} e_{R_{j}}\right) \\
& \mathcal{O}_{\Phi u, i j}^{(1)}=\Phi^{\dagger}\left(i \overleftrightarrow{D_{\mu}} \Phi\right)\left(\bar{u}_{R_{i}} \gamma^{\mu} u_{R_{j}}\right) \\
& \mathcal{O}_{\Phi d, i j}^{(1)}=\Phi^{\dagger}\left(i \stackrel{\leftrightarrow}{D_{\mu}} \Phi\right)\left(\bar{d}_{R_{i}} \gamma^{\mu} d_{R_{j}}\right) \\
& \mathcal{O}_{\Phi u d, i j}^{(1)}=\tilde{\Phi}^{\dagger}\left(i \overleftrightarrow{D_{\mu}} \Phi\right)\left(\bar{u}_{R_{i}} \gamma^{\mu} d_{R_{j}}\right)
\end{aligned}
$$

EWPT bounds: $\quad \alpha \Delta S=-\hat{e}^{2} \frac{v^{2}}{\Lambda^{2}} f_{B W} \quad$ and $\quad \alpha \Delta T=-\frac{1}{2} \frac{v^{2}}{\Lambda^{2}} f_{\Phi, 1}$
FCNC constrains the off-diagonal elements of

$$
\begin{aligned}
& \mathcal{O}_{e \Phi, i j}=\left(\Phi^{\dagger} \Phi\right)\left(\bar{L}_{i} \Phi e_{R_{j}}\right) \quad \mathcal{O}_{u \Phi, i j}=\left(\Phi^{\dagger} \Phi\right)\left(\bar{Q}_{i} \Phi u_{R_{j}}\right) \quad \mathcal{O}_{d \Phi, i j}=\left(\Phi^{\dagger} \Phi\right)\left(\bar{Q}_{i} \Phi d_{R_{j}}\right) \\
& \mathcal{L}_{e f f}^{H e e}=\sum_{i, j} \frac{f_{e \Phi, i j}}{\Lambda^{2}} \mathcal{O}_{e \Phi, i j}+\text { h.c. } \Longrightarrow \\
& \mathcal{L}^{H e e}=\sum_{i, j} g_{H i j}^{e} h \bar{e}_{L i} e_{R j}+\text { h.c. with } g_{H i j}^{e}=-\frac{m_{i}^{e}}{v} \delta_{i j}+\frac{v^{2}}{\sqrt{2} \Lambda^{2}}\left(f_{e \Phi}\right)_{i j}
\end{aligned}
$$

■The operators $\left(\mathcal{O}_{B}, \mathcal{O}_{W}\right)$ modify the TGV

$$
\begin{gathered}
\mathcal{O}_{W}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}^{\mu \nu}\left(D_{\nu} \Phi\right), \quad \mathcal{O}_{B}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{B}^{\mu \nu}\left(D_{\nu} \Phi\right) \\
\mathcal{L}_{W W V}=-i g_{W W V}\left\{g_{1}^{V}\left(W_{\mu \nu}^{+} W^{-\mu} V^{\nu}-W_{\mu}^{+} V_{\nu} W^{-\mu \nu}\right)+\kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu \nu}\right\}+
\end{gathered}
$$

[Hagiwara, Hikasa, Peccei,Zeppenfeld]
with

$$
\begin{aligned}
& \Delta g_{1}^{Z}=g_{1}^{Z}-1=\frac{g^{2} v^{2}}{8 c^{2} \Lambda^{2}} f_{W} \\
& \Delta \kappa_{\gamma}=\kappa_{\gamma}-1=\frac{g^{2} v^{2}}{8 \Lambda^{2}}\left(f_{W}+f_{B}\right) \\
& \Delta \kappa_{Z}=\kappa_{Z}-1=\frac{g^{2} v^{2}}{8 c^{2} \Lambda^{2}}\left(c^{2} f_{W}-s^{2} f_{B}\right)
\end{aligned}
$$

there are data on that.

- we choose the basis:
$\left\{\mathcal{O}_{G G}, \mathcal{O}_{B W}, \mathcal{O}_{W W}, \mathcal{O}_{W}, \mathcal{O}_{B}, \mathcal{O}_{\Phi, 1}, \mathcal{O}_{f \Phi}, \mathcal{O}_{\Phi f}^{(1)}, \mathcal{O}_{\Phi f}^{(3)}\right\}$
- we choose the basis:

- we choose the basis:

- after discarding the constrained operators \rightarrow 3:
- too many!
- 9 fermions: $\mathcal{O}_{e \Phi, j j}, \mathcal{O}_{u \Phi, j j}, \mathcal{O}_{d \Phi, j j}$
- neglecting the effects of couplings to first two generations
- due to small statistics we trade $f_{t o p} \rightarrow f_{g}$ and $f_{W W}$
- gauge bosons: $\mathcal{O}_{W}, \mathcal{O}_{B}, \mathcal{O}_{W W}, \mathcal{O}_{G G}$
- Summarizing:

	$h g g$	$h \gamma \gamma$	$h \gamma Z$	$h Z Z$	$h W^{+} W^{-}$	$\gamma W^{+} W^{-}$	$Z W^{+} W^{-}$
$\mathcal{O}_{G G}$	\checkmark						
$\mathcal{O}_{W W}$		\checkmark	\checkmark	\checkmark	\checkmark		
\mathcal{O}_{B}			\checkmark	\checkmark			
\mathcal{O}_{W}			\checkmark	\checkmark	\checkmark		

supplemented by shifts in the Yukawa couplings (3rd family)
nice feature: dimension-six operators lead to relations between anomalous couplings

- Summarizing:

	$h g g$	$h \gamma \gamma$	$h \gamma Z$	$h Z Z$	$h W^{+} W^{-}$	$\gamma W^{+} W^{-}$	$Z W^{+} W^{-}$
$\mathcal{O}_{G G}$	\checkmark						
$\mathcal{O}_{W W}$		\checkmark	\checkmark	\checkmark	\checkmark		
\mathcal{O}_{B}			\checkmark	\checkmark			
\mathcal{O}_{W}			\checkmark	\checkmark	\checkmark		
		\checkmark	\checkmark				

supplemented by shifts in the Yukawa couplings (3rd family)

$$
\mathcal{L}_{e f f}=-\frac{\alpha_{s} v}{8 \pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{G G}+\frac{f_{W W}}{\Lambda^{2}} \mathcal{O}_{W W}+\frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W}+\frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B}+\frac{f_{\mathrm{bot}}}{\Lambda^{2}} \mathcal{O}_{d \Phi, 33}+\frac{f_{\tau}}{\Lambda^{2}} \mathcal{O}_{e \Phi, 33}
$$

Fitting procedure

- Inputs: signal strength for the different channels $\mu=\frac{\sigma_{o b s}}{\sigma_{S M}}$
- using all available data [outdate since today]

$\gamma \gamma$

- The statistical analyses were done using

$$
\chi^{2}=\min _{\xi_{\text {pull }}} \sum_{j} \frac{\left(\mu_{j}-\mu_{j}^{\exp }\right)^{2}}{\sigma_{j}^{2}}+\sum_{\text {pull }}\left(\frac{\xi_{\text {pull }}}{\sigma_{\text {pull }}}\right)^{2}
$$

- we also used that

EWPT:

$\Delta S_{P D G}=0.00 \pm 0.10$

$$
\Delta T_{P D G}=0.02 \pm 0.11 \quad \Delta U_{P D G}=0.03 \pm 0.09
$$

$$
\rho=\left(\begin{array}{ccc}
1 & 0.89 & -0.55 \\
0.89 & 1 & -0.8 \\
-0.55 & -0.8 & 1
\end{array}\right)
$$

TGV bounds:

g_{1}^{Z}	κ_{γ}	κ_{Z}	Ref	Asummption
$0.984_{-0.019}^{+0.022}$	$0.973_{-0.045}^{+0.044}$	$0.924_{-0.056}^{+0.059}$	PDG	1-par fit (others SM)
$1.004_{-0.025}^{+0.024}$	$0.984_{-0.049}^{+0.049}$	GI: $\kappa_{Z}=g_{1}^{Z}-\left(\kappa_{\gamma}-1\right) s^{2} / c^{2}$	LEPEWWG	2-par fit with GI, $\rho=0.11$

Results

- First scenario: $\left(f_{G G}, f_{W W}, f_{W}, f_{B}, f_{b o t}=0, f_{\tau}=0\right)$
- Second scenario: ($\left.f_{G G}, f_{W W}, f_{W}, f_{B}, f_{b o t}, f_{\tau}=0\right)$

Fit with $f_{g}, f_{w}, f_{s} \cdot f_{w w}$ and $f_{\text {bot }}=f_{\tau}=0$
 interference with SM contribution leads to (near) degeneracy

$f_{b o t} \neq 0, \quad f_{\tau}=0$
largest impact of TGV+EWPT

$=0$

$f_{\text {bot }}=f_{\tau}=0$

cross sections and branching ratios

interesting correlations

Tevatron+LHC+TGV

Discussion

- we can constrain SMS couplings and TGV as well. both measurements can profit from the basis choice
[Campos, Gonzalez-Garcia,Novaes]

90\% CL allowed regions

THANK YOU

updated results at http://hep.if.usp.br/Higgs

BACKUP SLIDES

- The HVV new interactions are

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}^{\mathrm{HVV}}= & g_{H g g} H G_{\mu \nu}^{a} G^{a \mu \nu}+g_{H \gamma \gamma} H A_{\mu \nu} A^{\mu \nu}+g_{H Z \gamma}^{(1)} A_{\mu \nu} Z^{\mu} \partial^{\nu} H+g_{H Z \gamma}^{(2)} H A_{\mu \nu} Z^{\mu \nu} \\
& +g_{H Z Z}^{(1)} Z_{\mu \nu} Z^{\mu} \partial^{\nu} H+g_{H Z Z}^{(2)} H Z_{\mu \nu} Z^{\mu \nu}+g_{H}^{(2)} \nsim H Z_{\mu} Z^{\mu} \\
& +g_{H W W}^{(1)}\left(W_{\mu \nu}^{+} W^{-\mu} \partial^{\nu} H+\text { h.c. }\right)+g_{H W W}^{(2)} H W_{\mu \nu}^{+} W^{-\mu \nu}+g_{H y}^{(3)} H W_{\mu}^{+} W^{-\mu}
\end{aligned}
$$

with

$g_{H g g}=\frac{f_{G G} v}{\Lambda^{2}} \equiv-\frac{\alpha_{s}}{8 \pi} \frac{f_{g} v}{\Lambda^{2}}$
$g_{H \gamma \gamma}=-\left(\frac{g^{2} v s^{2}}{2 \Lambda^{2}}\right) \frac{\downarrow \times B+f_{W W}}{2}$
$g_{H Z \gamma}^{(1)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{s\left(f_{W}-f_{B}\right)}{2 c}$
$g_{H Z \gamma}^{(2)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{s\left[2 s^{2}\right)}{\frac{\left(B-2 c^{2} f_{W W}\right]}{2 c}}$
$g_{H Z Z}^{(1)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{c^{2} f_{W}+s^{2} f_{B}}{2 c^{2}}$
$g_{H Z Z}^{(2)}=-\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{\left.s^{4}\right) \frac{B+c^{4} f_{W W}}{2 c^{2}}}{\frac{1}{2}}$
$g_{H W W}^{(1)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{f_{W}}{2}$
$g_{H W W}^{(2)}=-\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) f_{W W}$

interesting correlations

effect of the bottom Yukawa on correlations

- To evaluate cross sections we write $\left.\underset{\text { FeynRulesMadGraphs } \sigma_{Y}^{a n o}=\left.\frac{\sigma_{Y}^{a} \sigma_{Y}^{\text {ano }}}{\sigma_{Y}^{S M}}\right|_{\text {tree }}}{ } \sigma_{Y}^{S M}\right|_{\text {soa }}$
- For widths $\quad \Gamma^{a n o}(h \rightarrow X)=\left.\left.\frac{\Gamma^{a n o}(h \rightarrow X)}{\Gamma^{S M}(h \rightarrow X)}\right|_{\text {tree }} \Gamma^{S M}(h \rightarrow X)\right|_{\text {soa }}$

- use all available information

$\mu_{F}=\frac{\epsilon_{g g}^{F} \sigma_{g g}^{a n o}\left(1+\xi_{g}\right)+\epsilon_{V B F}^{F} \sigma_{V B F}^{a n o}+\epsilon_{W H}^{F} \sigma_{W H}^{a n o}+\epsilon_{Z H}^{F} \sigma_{Z H}^{a n o}+\epsilon_{t \bar{t} H}^{F} \sigma_{t \bar{t} H}^{a n o}}{\epsilon_{g g}^{F} \sigma_{g g}^{S M}+\epsilon_{V B F}^{F} \sigma_{V B F}^{S M}+\epsilon_{W H}^{F} \sigma_{W H}^{S M}+\epsilon_{Z H}^{F} \sigma_{Z H}^{S M}+\epsilon_{t \bar{t} H}^{F} \sigma_{t \bar{t} H}^{S M}} \otimes \frac{\operatorname{Br}^{a n o}[h \rightarrow F]}{\operatorname{Br}^{S M}[h \rightarrow F]}$

- The statistical analyses were done using

$$
\chi^{2}=\min _{\xi_{\text {pull }}} \sum_{j} \frac{\left(\mu_{j}-\mu_{j}^{\exp }\right)^{2}}{\sigma_{j}^{2}}+\sum_{\text {pull }}\left(\frac{\xi_{\text {pull }}}{\sigma_{\text {pull }}}\right)^{2}
$$

we neglected correlation between the different channels

EWPT: there anomalous contributions to the oblique parameters

[Hagiwara, et al.;Alam, Dawson, Szalapski]

$$
\begin{aligned}
& \alpha \Delta S=-\hat{e}^{2} \frac{v^{2}}{\Lambda^{2}} f_{B W}-\frac{1}{6} \frac{\hat{e}^{2}}{16 \pi^{2}}\left\{3\left(f_{W}+f_{B}\right) \frac{m_{H}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right)+2\left(f_{\Phi, 2}-f_{\Phi, 4}\right) \frac{v^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right)\right. \\
& +2\left[\left(5 \hat{c}^{2}-2\right) f_{W}-\left(5 \hat{c}^{2}-3\right) f_{B}\right] \frac{m_{Z}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right) \\
& -\left[\left(22 \hat{c}^{2}-1\right) f_{W}-\left(30 \hat{c}^{2}+1\right) f_{B}\right] \frac{m_{Z}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{Z}^{2}}\right) \\
& \left.-24\left(\hat{c}^{2} f_{W W}+\hat{s}^{2} f_{B B}\right) \frac{m_{Z}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right)\right\}, \\
& \alpha \Delta T=\left(-\frac{1}{2} \frac{v^{2}}{\Lambda^{2}} f_{\Phi, 1}-\frac{3}{4 \hat{c}^{2}} \frac{\hat{e}^{2}}{16 \pi^{2}}\left\{f_{B} \frac{m_{H}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right)-\left(f_{\Phi, 2}-f_{\Phi, 4}\right) \frac{v^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right)\right)\right. \\
& +\left(\hat{c}^{2} f_{W}+f_{B}\right) \frac{m_{Z}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right) \\
& \left.+\left[2 \hat{c}^{2} f_{W}+\left(3 \hat{c}^{2}-1\right) f_{B}\right] \frac{m_{Z}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{Z}^{2}}\right)\right\}, \\
& \alpha \Delta U=\frac{1}{3} \frac{\hat{e}^{2} \hat{s}^{2}}{16 \pi^{2}}\left\{\left(-4 f_{W}+5 f_{B}\right) \frac{m_{Z}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right)\right. \\
& \left.+\left(2 f_{W}-5 f_{B}\right) \frac{m_{Z}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{Z}^{2}}\right)\right\},
\end{aligned}
$$

- Summarizing the results:

SMS (LHC+Tevatron) + TGV

	Fit with $f_{\text {bot }}=f_{\tau}=0$		Fit with $f_{\text {bot }}$ and f_{τ}	
	Best fit	90% CL allowed range	Best fit	90% CL allowed range
$f_{g} / \Lambda^{2}\left(\mathrm{TeV}^{-2}\right)$	$1.3,21.4$	$[-1.2,3.5] \cup[19,24]$	$1.3,21.4$	$[-21,4.8] \cup[18,44]$
$f_{W W} / \Lambda^{2}\left(\mathrm{TeV}^{-2}\right)$	-0.43	$[-0.80,-0.10] \cup[2.85,3.55]$	-0.39	$[-0.80,0] \cup[2.85,3.65]$
$f_{W} / \Lambda^{2}\left(\mathrm{TeV}^{-2}\right)$	1.43	$[-7.0,10]$	0.42	$[-7.4,7.6]$
$f_{B} / \Lambda^{2}\left(\mathrm{TeV}^{-2}\right)$	-8.4	$[-30,13]$	0.42	$[-7.4,7.6]$
$f_{b o t} / \Lambda^{2}\left(\mathrm{TeV}^{-2}\right)$	-	-	$0.00,0.90$	$[-1.2,0.20] \cup[0.70,2.1]$
$f_{\tau} / \Lambda^{2}\left(\mathrm{TeV}^{-2}\right)$	-	-	$0.02,0.32$	$[-0.07,0.13] \cup[0.2,0.40]$
$B R_{\gamma \gamma}^{a n o} / B R_{\gamma \gamma}^{S M}$	1.75	$[1.15,2.62]$	1.70	$[0.20,3.00]$
$B R_{W W}^{a n o} / B R_{W W}^{S M}$	0.97	$[0.75,1.14]$	1.02	$[0.11,1.94]$
$B R_{Z Z}^{a n o} / B R_{Z Z}^{S M}$	1.13	$[0.78,1.45]$	1.03	$[0.11,1.96]$
$B R_{b b}^{a n o} / B R_{b b}^{S M}$	1.01	$[0.84,1.06]$	1.04	$[0.53,1.53]$
$B R_{\tau \tau}^{a n o} / B R_{\tau \tau}^{S M}$	1.01	$[0.84,1.06]$	0.85	$[0.05,2.25]$
$\sigma_{g g}^{a n o} / \sigma_{g g}^{S M}$	0.79	$[0.47,1.23]$	0.79	$[0.35,8]$
$\sigma_{V B F /}^{a n o} / \sigma_{V B F}^{S M}$	1.02	$[0.92,1.21]$	1.00	$[0.91,1.13]$
$\sigma_{V H}^{a n o} / \sigma_{V H}^{S M}$	0.98	$[0.58,1.40]$	1.02	$[0.57,1.49]$

Collider + TGV + EWPD

- SMS production mechanisms and cross sections

- 4th July, 20I2 marks the dawning of new era
-48 years between EWSB theory and discovery
- 1964: theory [Englert\&Brout; Higgs; Guralnik\&Hagen\&Kibble]
- signal in many channels AA, ZZ,WW... as for the SMS

the new state fits the global picture

