Status of SUSY with extra singlets (NMSSM)

U. Ellwanger, LPT Orsay

- The SM scalar mass in SUSY with extra singlets
- Its diphoton rate in SUSY with extra singlets
- Additional scalars in SUSY with extra singlets
- Search for SUSY in SUSY with extra singlets

Exercise I and solutions: Consider the "mexican hat" potential of a complex scalar *H*: $V(H) = -m^2 |H|^2 + \lambda^2 |H|^4$

Decompose *H* into its real part *h* and complex part *a*: $H = \frac{1}{\sqrt{2}}(h + ia)$; study the potential as function of *h*:

$$\rightarrow V(h) = -\frac{m^2}{2}h^2 + \frac{\lambda^2}{4}h^4$$

Look for the minimum h = v (vacuum expectation value) of V(h): $\rightarrow v = \frac{m}{\lambda}$

The physical (tree level) mass M_h^2 of the scalar h is given by the second derivative of V(h) evaluated at the minimum:

$$M_h^2 = -m^2 + 3\lambda^2 v^2 = 2\lambda^2 v^2$$

(The second expression is more useful, since we know v from the W and Z masses)

- \rightarrow Larger M_h corresponds to larger λ
- \rightarrow If we would have known the coupling $\lambda,$ we could have predicted the scalar mass M_h

Supersymmetry relates various dimensionless couplings at tree level (even if softly broken by mass terms of $\mathcal{O}(M_{SUSY}) \sim v$)

MSSM: Two SU(2) doublets H_u and H_d , the quartic terms in $V(H_u, H_d)$ are given by the electroweak gauge couplings g_1 and g_2 :

$$V(H_u, H_d) = \frac{g_1^2 + g_2^2}{2} (H_u^2 - H_d^2)^2 + \dots$$

- \rightarrow Two physical scalars h and H
- \rightarrow Their masses have to be obtained by diagonalising a 2×2 mass matrix (of second derivatives of $V(H_u, H_d)$)
- \rightarrow Less information, since we only know $\sqrt{v_u^2 + v_d^2}$ from the W and Z masses, but $\tan \beta = \frac{v_u}{v_d}$ unknown
- \rightarrow Still: one obtains an upper tree level bound on the mass M_h of the lighter scalar:

$$M_h^2 = \frac{g_1^2 + g_2^2}{2} \sqrt{v_u^2 + v_d^2} \cos^2 2\beta \equiv M_Z^2 \cos^2 2\beta \le M_Z^2$$

- \rightarrow Disaster? Not if radiative ("Coleman-Weinberg"-) corrections to $V(H_u, H_d)$ are large enough, but
- \rightarrow need large (\geq 1 TeV) soft SUSY breaking top squark masses and/or trilinear top squark-scalar couplings A_{top} (\geq 1 TeV); unnatural?

Origin of the problem:

In the MSSM, no supersymmetric quartic couplings for H_u and H_d exist, except for the ones induced by the SUSY gauge interactions

A SUSY mass term μ for the components of H_u and H_d exists:

- required for higgsino masses $\mu \Psi_{H_u} \Psi_{H_d}$
- contributes to $V(H_u, H_d)$, but not to $M_h!$
- its order of magnitude $\mu \sim \mathcal{O}(M_{\text{SUSY}}) \sim v$ is difficult to explain (" μ -problem")

SUSY with extra singlets: Generate the μ -term through the vev of an extra scalar singlet S, $\langle S \rangle = v_s$:

$$\mu \Psi_{H_u} \Psi_{H_d} \to \lambda S \Psi_{H_u} \Psi_{H_d} \to \lambda v_s \Psi_{H_u} \Psi_{H_d}$$

 $(v_s \text{ of } \mathcal{O}(M_{SUSY}) \text{ is automatic})$

 \rightarrow Benefit: An extra quartic coupling $\lambda^2 H_u^2 H_d^2$ due to SUSY

 \rightarrow Larger mass $M_h > M_Z$ (at tree level!)

Now: Three physical scalars, superpositions of H_u , H_d and S

Their masses have to be obtained by diagonalising a 3×3 mass matrix

The tree level mass of the mostly SM like scalar h_{SM} is $M_{h_{SM}} = M_Z^2 \cos^2 2\beta + \lambda^2 (v_u^2 + v_d^2) \sin^2 2\beta \pm (. . .)$

 \pm (. . .): From mixing of the mostly SM like scalar h_{SM} with the mostly singlet like scalar h_s (dep. on unknown parameters); positive if $M_{h_s} < M_{h_{SM}}$!

→ $M_{h_{SM}} > M_Z$ much easier to obtain than in the MSSM (at low tan β → large sin² 2 β) no large rad. corrs. (heavy top squarks) required for $M_{h_{SM}} \sim 125$ GeV

Impact on the diphoton signal rate:

1) Recall:

$$BR(H \to \gamma \gamma) = \frac{\Gamma(H \to \gamma \gamma)}{\Gamma(H \to bb) + \dots}$$

 $(\Gamma(H \rightarrow bb) \text{ gives} \sim 58\% \text{ of the total width for a 125 GeV scalar mass})$

- \rightarrow Due to the mixing of H_u , H_d , S it is easily possible that, in the NMSSM, the mostly SM-like scalar h_{SM} has
- a reduced coupling to bb, and hence a reduced width $\Gamma(h_{SM} \rightarrow bb)$ \rightarrow an enhanced $BR(h_{SM} \rightarrow \gamma\gamma)$
- nearly SM-like couplings to the top quark (whose loops induce the coupling to gluons) and to the electroweak gauge bosons
 → the production rates in gluon fusion and/or VBF are hardly reduced
- \rightarrow The diphoton signal rate is enhanced (U.E. 2010)

2) Recall: In the SM, $\Gamma(H \rightarrow \gamma \gamma)$ is induced via W-boson (and top quark) loops:

In the NMSSM, the singlet S couples to the (charged) higgsinos Ψ_{H_u}, Ψ_{H_d} :

 $\lambda S \Psi_{H_u} \Psi_{H_d}$ (recall the generation of the μ -term through $\langle S \rangle$)

 \rightarrow If h_{SM} has a S-component, charged higgsinos contribute to the loop and to $\Gamma(h_{SM} \rightarrow \gamma \gamma)$ unless λ is small or the higgsinos are heavy Note: Singlet extensions of the MSSM are not unique:

- The "singlet" could be charged under an extra U(1)' gauge symmetry (implying a Z' gauge boson)
- \rightarrow H_u , H_d must be charged as well
- \rightarrow Quarks, leptons must be charged as well
- Several singlets are possible
 - $(\rightarrow \text{ more states, but with reduced couplings})$
- The SUSY S-dependent terms can be dimensionful (mass term, tadpole term) or not

If not: This version of the NMSSM is the simplest SUSY extension of the SM where all SUSY interactions are scale invariant (no μ -term as in the MSSM)

- The running coupling λ can remain $\lesssim 1$ up to the GUT scale If not: " λ -SUSY", a Landau singularity in the running coupling λ can indicate a compositeness scale
- The soft SUSY breaking terms can be universal at the GUT scale: Universal squark, slepton masses m_0 and gaugino masses $M_{1/2}$ as in the cMSSM

Including the soft SUSY breaking BEH scalar masses \rightarrow cNMSSM or not \rightarrow "semi-constrained" sNMSSM

— The soft SUSY breaking terms can be induced by gauge mediation

The naturalness of $M_{h_{SM}}\sim$ 125 GeV and the possible enhancement of the $\gamma\gamma$ signal rate hold in all these scenarios

Examples in the parameter space of the semi-constrained NMSSM

Imposing $M_{h_{SM}} \sim 125$ GeV, good dark matter relic density The mostly SM-like scalar h_{SM} is the next-to-lightest H_2 H_1 satisfies constraints from LEP (with C. Hugonie, arXiv:1203:5049; more studies exist)

 $R_2^{\gamma\gamma}(gg)$: $\gamma\gamma$ signal rate of H_2 in gluon fusion relative to the SM: $R_2^{\gamma\gamma}(gg) = \frac{\text{production cross section} \times BR(h_{SM} \to \gamma\gamma)}{\text{production cross section} \times BR(H_{SM} \to \gamma\gamma)}$

 $R_2^{VV}(gg)$: ZZ/WW signal rate of the second scalar in gluon fusion

 $R_2^{bb}(VH)$: bb signal rate of the second scalar in associate production with a V = Z or W boson

$R_2^{VV}(gg) \equiv R_2^{ZZ} \equiv R_2^{WW}$ against $R_2^{\gamma\gamma}(gg)$:

 $\rightarrow R_2^{\gamma\gamma}(gg)$ can be enhanced by a factor 2 (or larger); both mechanisms 1) and 2) contribute!

 \rightarrow If $R_2^{\gamma\gamma}(gg) \lesssim 2$: $R_2^{VV}(gg) \equiv R_2^{ZZ} \equiv R_2^{WW}$ is not necessarily enhanced

$R_2^{bb}(VH)$ against $R_2^{\gamma\gamma}(gg)$: In conflict with the SM-like signal rate $h_{SM} \rightarrow bb$?

→ If $R_2^{\gamma\gamma}(gg) \leq 1.5$: $R_2^{bb}(VH)$ is not necessarily reduced, the enhancement of $R_2^{\gamma\gamma}(gg)$ results from the additional higgsino loop, not from a reduction of $\Gamma(h_{SM} \rightarrow bb)$ If h_{SM} mixes strongly with another mostly singlet-like scalar: The mass of this mostly singlet-like scalar should be not too far from $M_{h_{SM}} \sim 125 \text{ GeV}$

 \rightarrow Are there hints for (at least weak bounds on) such a state?

Unfortunately: The couplings/signal rates of such a state are typically reduced relative to the ones of h_{SM} , but it can still be visible

If this state has a mass below 114 GeV: Study the bounds on the signal rate ξ^2 in $Z^* \rightarrow Z + h_{SM}$ at LEP:

Or: could be very close to 125 GeV? (Gunion, Jiang, Kraml, 1207.1545 and 1208.1817)

If this state has a mass above 125 GeV:

CMS (pre-Moriond): Additional excesses at 135 GeV (in $\gamma\gamma$, ~ 2 σ) 145 GeV (in ZZ, ~ 2.5 σ)

BUT: Not in Atlas ...

Best fits of M_H in VH with $H \rightarrow bb$ (low mass resolution):

Tevatron (1207.6436, PRL):

CMS (pre-Moriond):

→ For M_H ~ 135 GeV!? Due to the low mass resolution in H → bb, the excesses could be a superposition of two states at 125 + 135 GeV!
 → Possible in the NMSSM! (See arXiv:1208.4952) let's see...

Keep your eyes wide open for possible excesses – in any channel – below and above 125 GeV!

Possible impact of Singlet extensions of the MSSM on searches for SUSY:

Typically (if a good dark matter relic density is imposed):

- The lighter neutralinos χ_n^0 , n = 1...3, are mixtures of higgsinos and the singlino (superpartner of the singlet superfield \hat{S})
- Binos/winos decay via cascades involving χ^0_n and χ^\pm_1
- \rightarrow The squark decay cascades are relatively long
- Lighter top squarks are favored by low fine tuning, and the RG equations from $M_{GUT} \rightarrow M_{weak}$ at low tan β :
- \rightarrow Gluinos decay via stops: $\tilde{g} \rightarrow t + \tilde{t} \rightarrow t + b + \chi_1^{\pm} \rightarrow t + b + W^{\pm} + \chi_1^0$

 \rightarrow Less missing E_T , less p_T per jet than in the typical MSSM

How are the (c)MSSM bounds on squark/gluino masses affected due to the additional neutralino and/or light top squarks in the sNMSSM?

With D. Das, A.M. Teixeira (arXiv:1301.7584): Simulations of squark/gluino production in the sNMSSM (with $M_{h_{SM}} \sim 125$ GeV, good DM relic density)

Apply the cuts of the ATLAS searches for 3-6 jets (7-9 jets) and missing E_T at $\sqrt{s} = 8$ TeV

 \rightarrow Reduction of the signal efficiencies by \sim 50%

Comparison of bounds on M_{squark} vs. M_{gluino} from searches for 3-6 jets and missing E_T by ATLAS (pre-Moriond)

 \rightarrow For $M_{\text{gluino}} \gtrsim 1200$ GeV, the bounds from searches for 3-6 jets in the sNMSSM (full red line) are somewhat weaker than in the cMSSM (full black line)

→ For $M_{gluino} \lesssim 1200$ GeV, the bounds from searches for 7-9 jets in the sNMSSM (full blue line) are somewhat stronger than bounds from 3-6 jets in the cMSSM (Still: weaker than the 7-9 jets bounds within the cMSSM, not shown)

Conclusions

— Given $M_{h_{SM}}\sim$ 125 GeV, the NMSSM is the most natural SUSY extension of the SM: scale invariant SUSY interactions, no need for very heavy top squarks, but gauge coupling unification and a good dark matter candidate as in the MSSM

— An enhanced $\gamma\gamma$ signal rate of h_{SM} can be a hint for the NMSSM

— Additional below-the-SM signals in searches for scalars at low mass ($\lesssim 200$ GeV) can be a hint for the NMSSM

 Searches for SUSY (squarks, gluinos) can be handicapped due to more complicated sparticle decay cascades