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Recent next-to-next-to-leading-order studies have shown that, for the current experimental
values of the Higgs mass, top quark mass and strong coupling, the Standard Model (SM)
scalar potential has a second minimum, deeper than the electroweak one. I will review a
simple and efficient mechanism to stabilise the electroweak vacuum. The mechanism involves
an extra scalar singlet and can be easily at work in existing beyond the SM scenarios like the
see-saw neutrino mechanism, invisible axion and unitarized Higgs inflation models.

1 Introduction

The Higgs sector of the Standard Model (SM) is the part of the theory that has been less
confronted with the experiments. Interestingly, some of the most prominent theoretical problems
arise from the Higgs sector. In particular, the measured mass Mh ≈ 125 GeV of the Higgs
particle recently discovered, by the experiments ATLAS 1 and CMS 2, is rather intriguing from
the point of view of the stability of the electroweak (EW) vacuum of the Standard Model (SM).
The stability of the EW vacuum is very sensitive to the Higgs mass mh, the top mass Mt and
the strong coupling αs, in order of decreasing sensitivity.

The state-of-the-art analyses of the SM vacuum stability after the latest LHC data is done at
the nex-to-next-to-leading order level 3. The main result of such a study 3 is that for the current
central experimental values of the relevant SM experimental inputs (mh, Mt, gauge couplings
and the Fermi constant GF ), the EW vacuum is unstable: there is a minimum deeper than the
EW one at large field values φ ∼ 1011 GeV.

Although the Higgs vev at the EW scale (ΛEW ≈ 246GeV) is sitting in an unstable minimum,
this is not necessarily a problem; the reason is at least two-fold. Firstly, the SM is likely to be
embedded in a more fundamental theory not far from the ∼TeV scale. The infamous EW
scale fine-tuning problem is the main motivation for such new physics at the ∼TeV scale. And
secondly, most probably the vacuum is not very unstable: the age of the universe ∆t over the
vacuum’s life time τ is really small, ∆t/τ ∼ 10−90±10. This is because the Higgs quartic coupling
λ becomes negative along its Renormalization Group (RG) flow, but its absolute value remains
small, λ(µ) & −0.01.

However, although there is not any physical problem with an unstable vacuum that is suffi-
ciently long lived, we wold like to understand how it might be stabilised in different extensions
of the SM which have different motivations than the stability issue. Furthermore, it can be
desirable to cure the Higgs instability at large field values to avoid:

- cosmological constrains,



- an upper bound for the supersymmetric SM matching scale 3,4,5,

- constraints in the upper bound of see-saw neutrino partners 6,7,

- tension between models of Higgs inflation and the scale of inflation 8,

There are many ad hoc possibilities to modify the Higgs potential and rise the instability
scale. For instance, additional bosonic fields change the behaviour of the Higgs quartic coupling
in such a way that it tends to be greater when it is evolved from low to high energies (for
recent analyses, see 9,10 and references therein). In reference 8 a simple and robust mechanism to
stabilise the EW vacuum was proposed. It is based on a tree-level scalar threshold effect which
can be easily at work in generalisations of the SM that have independent motivations from the
instability of the EW vacuum.

In this note, we will review the main results presented in 8, that is: we will explain the
aforementioned mechanism to stabilise the EW vacuum and provide examples of beyond the SM
scenarios in which the mechanism can be operative.

2 Stabilising the Higgs by a scalar threshold effect

To explore the impact of an additional singlet scalar on the stability of the Higgs potential, we
consider a tree-level scalar potential of the form

V0 = λH

(
|H|2 − v2/2

)2
+ λS

(
|S|2 − w2/2

)2
+ λHS

(
|H|2 − v2/2

)(
|S|2 − w2/2

)
. (1)

Here H is the Higgs doublet and S is a complex scalar field. V0 is the most general dimension-four
potential that respects a global Abelian symmetry under which only S is charged. Although we
will consider here a single complex scalar, most of our conclusions remain valid also in the case
of multi-Higgs doublets or real singlet fields (with a Z2 parity replacing the abelian symmetry).

The analysis will be performed at leading order: one-loop improved effective potential,
i.e. tree-level potential with its couplings evaluated at µ ∼ φ by means of the one-loop beta
functions, plus tree level matching conditions. By φ we denote the scalar field background, in
some direction of the H−S field space. Working at leading order is sufficient to show the points
we are interested in and it has the advantage that we will be able to show analytical and simple
expressions.

For λH , λS > 0 and λ2HS < λHλS , the minimum of V0 is at

〈H†H〉 = v2/2 , 〈S†S〉 = w2/2 , (2)

and the potential is normalised such that at its minimum V0|min = 0. A nonzero vacuum
expectation value (vev) of S, which is crucial for the mechanism to work, spontaneously breaks
the global symmetry, giving rise to a potentially dangerous Goldstone boson. Gauging the
symmetry of S or explicitly breaking it by small terms in V0 can be used to evade these problems,
but does not conceptually modify our results. For simplicity, we restrict our considerations to
the potential in Eq. 1, but generalisations are straightforward.

At the minimum, the mass matrix is:

M2 = 2

(
λHv

2 λHSvw
λHSvw λSw

2

)
; (3)

its eigenvalues are:

m2
h = 2v2

(
λH −

λ2HS
λS

)
+O

(
v4

w2

)
,

M2
s = 2λSw

2 + 2(λ2HS/λS)v2 +O
(
v4

w2

)
.

(4)



We will consider w2 � v2 such that, at tree level, mh ∼ v ∼ ΛEW and Ms ∼ w.
The presence of the new scalar field S modifies the analysis of the stability conditions of the

Higgs potential. As already mentioned in the introduction, the presence of new bosonic degrees
of freedom change the running of the Higgs quartic coupling, above the mass scale of the new
bosons, in such a way that the potential tends to be more stable. This is so because loops of
scalars contribute positively to the beta function of the Higgs quartic coupling. These are the
one-loop beta function of the quartic couplings of the Lagrangian defined in Eq. 1, above the
mass scale of S:

16π2
λH
dlnµ

=
(

12y2t − 3g′
2 − 9g2

)
λH − 6y4t +

3

8

[
2g4 + (g′

2
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]
+ 24λ2H + 4λ2HS ,

16π2
λS
dlnµ

=
1

2

(
12y2t − 3g′
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)
λHS + 4λHS (3λH + 2λS) + 8λ2HS ,

16π2
λHS
dlnµ

= 8λ2HS + 20λ2S .

(5)

If the singlet mass MS is below the SM instability scale ΛI and (λHS
4π )2ln (ΛI/MS) is large

enough, the positive contribution of λHS to the RGE equation for λH can prevent it from
becoming negative.

2.1 Threshold effect

Besides the loop contribution to the running of λ(µ) discussed above, there is a related tree-level
effect through which the new singlet can affect the stability bound. Let us consider the limit in
which MS is much larger than the Higgs mass (w2 � v2). Then, we can integrate out the field
S at the scale MS . At the order of precision we are working this is equivalent to substituting S
in Eq. 1 by its equations of motions. Making such substitution we obtain the effective potential,
below the scale MS ,

Veff = λ
(
|H|2 − v2/2

)
(6)

and the matching condition, imposed at the scale MS ,

λ = λH −
λ2HS
λS

. (7)

The effective potential Eq. 6 is nothing but the SM Higgs potential. As we will make clear in the
following pages, the crucial point is that the matching condition of the Higgs quartic coupling
corresponds to a positive shift as it is evolved from low to high energies. And, this effect does
not decouple: it is independent of the mass MS .

In the low energy theory (Eq. 6), below MS , the condition to ensure stability of the EW
vacuum is the same as in the SM. The instability in the SM appears for Λ2

I � v2. Therefore, at
the level of precision we are working the stability condition takes the simple form λ(φ) > 0, for
v � φ < MS .

Naively, as the tree-level shift δλ corresponds to a larger Higgs quartic coupling above
MS , the chances of keeping it positive seem improved. However, as we show below, the tree-
level conditions for stability change from λ > 0 in the effective theory below MS to λH > δλ
in the full theory above MS . Thus, it appears that the threshold correction δλ does not help
stability at all. To understand what happens, one has to reexamine the stability conditions more
carefully. First of all, recall that the tree-level potential V0 in Eq. 1 is a good approximation
to the full potential if we evaluate couplings and masses (collectively denoted by λi below)
at a renormalization scale of the order of the field values of interest. Once we express the
scalar potential as V0[λi(µ = ϕ), ϕ], potentially large logarithms of the form lnmi(ϕ)/µ (where



mi(ϕ) ∼ ϕ is a typical field-dependent mass) are kept small. Roughly speaking, this means that
V0 with a fixed µc will be reliable as long as one examines ϕ ∼ µc and restricts field excursions to
|ϕ−µc| < µce

8π2λ0/λ21 (where λ0 denotes a coupling in the tree-level potential and λ1 a coupling
affecting the radiative corrections, e.g. the top Yukawa coupling squared). By adjusting µ ∼ ϕ
one can evaluate reliably the potential at all field values, but the previous estimate tells us when
we can use V0[λi(µc), ϕ], which has a simpler field dependence.

In the full theory, Eq. 1, above the MS scale, the first two obvious stability conditions are

λH > 0 and λS > 0, (8)

to avoid unbounded from below directions for large field values, along the H and S directions.
Then, for the mixing term, we can distinguish two cases: λHS > 0 or λHS < 0. Now we discuss
each case in turn a.

◦ Case λHS > 0

In this case, V0 can become negative only when |S| < w/
√

2 (neglecting corrections propor-
tional to v). In this situation, the most dangerous field configuration is well approximated
by setting S = 0 in Eq. 1, such that

V0(H, 0) ≈ λH |H|4 −
λHS
2λS

M2
S |H|2 +

M4
S

16λS
. (9)

The extra stability condition (V0 > 0) is then

λ2HS(µ) < λH(µ)λS(µ) . (10)

Note that this can be rewritten as λH > δλ = λ2HS/λS and ensures that the light scalar
state does not become tachyonic, see Eq. 4. If this condition were violated at some scale
µ∗, it would lead to an instability for field configurations with

|S| < MS

2
√
λS
, µ− < |H| < µ+, µ2± =

M2
SλHS

4λHλS

(
1±

√
1− λHλS

λ2HS

)∣∣∣∣∣
µ∗

, (11)

which could be trusted provided µ− < µ∗ < µ+. Note that, if µ∗ � µ±, this would
not mean that there is an instability to worry about, as it would be located outside
the range of validity of the tree-level approximation V0(λi(µ∗), ϕ). Thus, as long as the
condition in Eq. 10 is satisfied for renormalization scales within a relatively narrow range
of energies around MS (which fixes the mass scale of µ±), there is no instability even if
this condition were eventually violated at higher scales. Only if parameters happen to lie
near a critical point in which at least one of conditions (Eq. 10 or 11) is barely satisfied,
radiative corrections can become important and invalidate the stability analysis performed
with the tree-level potential. In this case one should resort to the one-loop approximation
of the potential; otherwise, our analysis is reliable.

◦ Case λHS < 0

A similar analysis can be performed for this case. Provided Eq. 8 is fulfilled, the potential
can only be negative at field values |S| > w/

√
2. The stability condition is:

−λHS(µ) <
√
λH(µ)λS(µ) . (12)

aThis separation makes sense because λHS renormalizes multiplicatively, since it is the only coupling connecting
both sectors: the new singlet and the SM Higgs sector. Therefore λHS does not flip sign along the running.



If this condition is not fulfilled at some scale µ∗ an instability occurs with

|S| > MS

2
√
λS
, c− <

|H|
|S|

< c+, µ2± =
−λHS
λH

(
1±

√
1− λHλS

λ2HS

)∣∣∣∣∣
µ∗

. (13)

Eq. 13 determines a direction in field space along which the potential becomes unbounded
from bellow. Therefore, the condition of Eq. 12 has to be fulfilled for arbitrarily high
scales.
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Figure 1: Running of the Higgs quartic coupling in the SM and in the model with a scalar singlet, here assumed
to have the mass MS = 108 GeV. Left: if λHS > 0, thanks to the tree level shift at the singlet mass, the coupling
never enters into the instability region, even assuming that singlet contributions to the RG equations are negligible.
Right: if λHS < 0 the instability can be shifted away or avoided only by singlet contributions to the RG equations.

In Fig. 1 we show two realistic plots of the running of the Higgs quartic coupling as a function
of the renormalization scale for both cases λHS > 0 (left) and λHS < 0 (right). The red region
is the instability region. If the quartic coupling enters in that region for some field value, there
is a minimum deeper than the EW vacuum at such field value. The left plot shows that the
mechanism just described is potentially very effective in stabilising the SM vacuum. As it was
mentioned before, apart from the matching condition there is the related RGE effect, which also
tends to increase the value of λH .

3 Examples

In this section we discuss a situation of physical interest where this mechanism can naturally
operate. This is the see-saw mechanism for neutrino masses. This is the simplest version of the
see-saw mechanism:

δL = iN̄γ∂N + yνLNH +
MN

2
N2 + h.c. (14)

In the above equation, we have coupled a very massive Majorana fermion N, of mass MN , to the
SM Higgs H and lepton doublet L. Then, when the Higgs takes vev, the interaction term mixes



the mass terms of the SM neutrinos and N. Upon diagonalizing, the SM neutrinos get mass

mν =
y2νv

2

MN
, (15)

which is small provided MN � v.
The impact of the see-saw mechanism on the stability of the EW vacuum has been discussed

in the literature 6. The new neutrinos tend to make the potential more unstable, because they
change the RGE flow of the quartic coupling above their mass scale. Their impact depends
on the value of the Yukawa couplings, which increase as yν ∝

√
MN , and becomes sizeable for

MN & 1013 GeV.

Mt = (173.2 ± 0.9) GeV
Αs = 0.1184 ± 0.0007
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Figure 2: In red, the SM instability scale ΛI as a function of the Higgs mass. The central curve correspond to
Mt = 173.2 GeV and αs(MZ) = 0.1184 and the side-bands to 1-sigma deviations (with larger deviation for the
top mass). In black, the three dashed lines correspond to the lower limits of the mass of the lightest right-handed

neutrino coming from thermal leptogenesis. The green band is the experimentally favoured Higgs mass.

We do not know what originated the large MN mass, but an appealing way of giving mass
to N is through a Higgs-like mechanism with a scalar S which gets a large vev. This scalar,
apart from giving mass to the right-handed neutrinos, is coupled to the Higgs in a way that
it can stabilise the SM vacuum by the threshold effect we described in the preceding section.
Obviously, if the new scalar is to stabilise the Higgs potential, its mass scale should be smaller
than the instability scale ΛI ∼ 1011 GeV. Interestingly, there are lower bounds coming from lep-
togenesis 11 (if this explains the baryon asymmetry and for hierarchical right handed neutrinos),
which are compatible with the upper bound.

In Fig. 2 we show a plot of the SM instability scale as a function of the Higgs mass. The
dotted lines are the different lower bounds on the mass of the right handed neutrinos, the scale
where approximately the threshold effect operates. The red band is the upper bound for the
singlet mass, if the singlet is to stabilise the vacuum. Therefore, for the experimentally favoured
value of mh ∼ 125 GeV, there is room for the mechanism to be naturally at work, that is: to
give mass to N and stabilise the EW vacuum.

Lastly, we want to mention that in reference 8, other beyond the SM scenarios where the
mechanism can naturally operate have been identified: invisible axion models and unitarized
Higgs inflation. See reference 8 for further details.
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