

Recent Results From The Daya Bay Experiment

Guofu Cao

Institute of High Energy Physics, China On behalf of the Daya Bay Collaboration

48th Rencontres de Moriond, EW session, La Thuile, Italy March 02 – 09, 2013

Daya Bay 13 The Daya Bay Collaboration 13

Political Map of the World, June 1999

Europe (2) JINR (Dubna) Russia Charles University, Czech Republic

North America (15)

BNL, Caltech, Iowa State Univ., Illinois Inst. Tech., LBNL, Princeton, RPI, Siena, UC-Berkeley, Univ. of Cincinnati, Univ. of Houston, Univ. of Wisconsin-Madison, Univ. of Illinois-Urbana-Champaign, Virginia Tech., William & Mary

Asia (22)

Beijing Normal Univ., Chengdu UST, CGNPG,
CIAE, Dongguan Univ. Tech., IHEP,
Nanjing Univ., Nankai Univ., NCEPU, NUDT,
Shandong Univ., Shanghai Jiaotong Univ.,
Shenzhen Univ., Tsinghua Univ., USTC,
Xi'an Jiaotong Univ., Zhongshan Univ.,
Chinese Univ. of Hong Kong, Univ. of Hong Kong,
National Taiwan Univ.,

National Chiao Tung Univ., National United Univ.

~230 Collaborators

Neutrino flavour eigenstates *≠* Mass eigenstates

$$\begin{pmatrix} \boldsymbol{\nu}_{e} \\ \boldsymbol{\nu}_{\mu} \\ \boldsymbol{\nu}_{\tau} \end{pmatrix} = U_{PMNS} \begin{pmatrix} \boldsymbol{\nu}_{1} \\ \boldsymbol{\nu}_{2} \\ \boldsymbol{\nu}_{3} \end{pmatrix}$$

 U_{PMNS} is a 3×3 unitary matrix described by three mixing angles θ_{23} , θ_{13} , θ_{12} , and CP phase δ + 2 Majorana phases.

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & e^{-i\delta} & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\rho} & 0 & 0 \\ 0 & e^{i\sigma} & 0 \\ 0 & 0 & 1 \end{pmatrix} c_{ij} = \cos\theta_{ij}$$

Last unknown mixing angle θ_{13} before 2011: $\sin^2(2 \theta_{13}) < 0.15$ (90 C.L.)

The Daya Bay Experiment is a well designed short baseline reactor neutrino experiment to precisely determine θ_{13} .

Daya Bay 13 Daya Bay Experiment Layout 13

- 6 reactor cores, 17.6GW_{th} total power
- Relative measurement
 - 2 near sites, 1 far site
- Multiple detector modules
- Good cosmic ray shielding

TABLE I. Vertical overburden (m.w.e.), muon rate R_{μ} (Hz/m²), and average muon energy E_{μ} (GeV) of the three EHs, and the distances (m) to the reactor pairs.

	Overburden	R_{μ}	E_{μ}	D1,2	L1,2	L3,4
EH1	250	1.27	57	364	857	1307
EH2	265	0.95	58	1348	480	528
EH3	860	0.056	137	1912	1540	1548

- Multiple Anti-neutrino Detector (AD) modules to check Uncorr. Syst. Err.
 - Far: 4 modules, near: 2 modules
- Multiple muon detectors to reduce veto eff. uncertainties
 - Water Cherenkov: 2 layers, efficiency > 97%
 - RPC: 4 layers at the top + telescopes, efficiency > 88%

Daya Bay Near Hall (EH1)

Daya Bay 13 Ling Ao Near Hall & Far Hall 13

Ling Ao Near Hall with 1 AD Data taking begin since Nov.5, 2011

Far Hall with 3 ADs

Data taking begin since Dec.24, 2011

Data Period

- A : Two Detector Comparison: Sep. 23, 2011 – Dec. 23, 2011 Nucl. Inst. and Meth. A 685 (2012), pp. 78-97
- B: First Oscillation Result: Dec. 24, 2011 – Feb. 17, 2012 Phys. Rev. Lett. 108, 171803 (2012)
- C: Updated oscillation analysis: Dec. 24, 2011 – May 11, 2012 Chinese Phys. C 37, (2013) 011001
 - Data volume: 40TB
 - DAQ eff. ~ 96%
 - Eff. for physics: ~ 94%

Daya Bay 13 Calibration & reconstruction 13

- Low intensity LED for PMT gain.
- ⁶⁰Co at detector center for energy scale.
- ⁶⁰Co at different positions to correct spatial dependence (non-uniformity).
- Calibrate energy scale using neutron capture peak.

Non-uniformity correction function

0.12% efficiency uncertainty among detectors

Neutrino Event Signature in Gd-LS

Signature:
$$\overline{v}_e + p \rightarrow e^+ + n (IBD)$$

- Prompt: e⁺, E: 1-10 MeV
- Delayed: n, E: 2.2 MeV@H, 8 MeV @ Gd
- > Capture time: 28 μ s in 0.1% Gd-LS

Neutrino Event: coincidence in time, space and energy

0/1200

800

600

400

200

2000 1500

-1000

Anti-neutrino Events Selection

10⁴

10³

Anti-neutrino event selection

- $0.7 \text{ MeV} < E_{p} < 12.0 \text{ MeV}$
- $6.0 \text{ MeV} < \text{E}_{d} < 12.0 \text{ MeV}$
- $1 \ \mu s < \Delta t_{p-d} < 200 \ \mu s$

8

0.4

Prompt energy

0.6

Muon Veto: 0.6 ms after a Pool muon (reject fast neutron), 1 ms after an AD muon (reject double neutron), 1 s after an AD shower muon (reject ⁹Li/⁸He)

8

10

11 Delayed Energy(MeV)

Backgrounds

- Uncorrelated background
 - Accidentals: two uncorrelated events pass selection and mimic neutrino event.
- Correlated background
 - Muon spallation
 - ⁹Li/⁸He
 - Fast neutrons
 - From ²⁴¹Am-¹³C calibration source
 - ${}^{13}C(\alpha, n)^{16}O$

Backgrounds summary

	Near	Halls	Far		
	B/S %	σ _{B/S} %	B/S %	σ _{B/S} %	$\Delta B/B$
Accidentals	1.5	0.02	4.0	0.05	~1%
Fast neutrons	0.12	0.05	0.07	0.03	~40%
⁹ Li/ ⁸ He	0.4	0.2	0.3	0.2	~50%
²⁴¹ Am- ¹³ C	0.03	0.03	0.3	0.3	~100%
$^{13}C(\alpha, n)^{16}O$	0.01	0.006	0.05	0.03	~50%
Sum	2.1	0.21	4.7	0.37	~10%

- Total backgrounds are 5% (2%) at far (near) halls.
- Background uncertainties are 0.4% (0.2%) at far (near) halls.

Detector						
	Efficiency	Correlated	Uncorrelated			
Target Protons		0.47%	0.03%			
Flasher cut	99.98%	0.01%	0.01%			
Delayed energy of	ut 90.9%	0.6%	0.12%			
Prompt energy cu	ıt 99.88%	0.10%	0.01%			
Multiplicity cut		0.02%	< 0.01%			
Capture time cut	98.6%	0.12%	0.01%			
Gd capture ratio	83.8%	0.8%	< 0.1%			
Spill-in	105.0%	1.5%	0.02%			
Livetime	100.0%	0.002%	< 0.01%			
Combined	78.8%	1.9%	0.2%			
Reactor						
Correla	ated	Uncorrelated				
Energy/fission	0.2%	Power	0.5%			
$\overline{\nu}_{e}$ /fission	3%	Fission fra	oction 0.6%			
		Spent fuel	0.3%			
Combined	3%	Combined	0.8%			

Correlated uncertainty fully canceled in near/far measurement

Daya Bay 13 Efficiencies & uncertainties 13

Detector							
	Efficiency	Correl	ated	Uncorr	related		
Target Protons		0.47%)	0.03%			
Flasher cut	99.98%	0.01%		0.01%			
Delayed energy cut	90.9%	0.6%		0.12%			
Prompt energy cut	99.88%	0.10%		0.01%			
Multiplicity cut		0.02%		< 0.01%			
Capture time cut	98.6%	0.12%		0.01%			
Gd capture ratio	83.8%	0.8%		< 0.1%			
Spill-in	105.0%	1.5%		0.02%	7		
Livetime	100.0%	0.002%		< 0.01	%		
Combined	78.8%	1.9%		0.2%			
Reactor							
Correlated		Uncorr	rrelated				
Energy/fission	0.2%	Power		0.5%			
$\overline{\nu}_{e}$ /fission	3%	Fission fraction 0.6%					
		Spent fuel		0.3%			
Combined	3%	Combined		0.8%			

Correlated uncertainty fully canceled in near/far measurement

Detector uncorrelated uncertainty:

Designed value

Baseline: 0.38%

Goal: 0.18%

Reactor uncorrelated uncertainty:

Reduced by a 1/20 factor in the near/far measurement

Detected neutrino rates strongly correlated with reactor flux expectations.

Predicted rate

- Normalization is determined by fit to near/far data.
- Absolute normalization is within a few percent of expectations.

With 2.5x more statistics, an improved measured of θ_{13}

Daya Bay 13 Global landscape of sin²2 θ_{13}

18

• Unambiguous observation of reactor electron anti-neutrino disappearance at ~2km baseline:

 $R = 0.944 \pm 0.007 \text{ (stat)} \pm 0.003 \text{ (syst)}$

• Interpreting the disappearance as neutrino oscillation yields the most precise measurement of θ_{13} :

 $\sin^2 2 \theta_{13} = 0.089 \pm 0.010(\text{stat}) \pm 0.005(\text{syst})$

- Data taking with all eight detectors have began since Oct.19, 2012.
- Daya Bay will continue to provide the most precise measurement of θ_{13} over the world.
- Shape analysis results will come soon.
- More physics expected: reactor flux and spectrum, etc.

Backup

Side by side comparison

- Multi detectors in one site
 - Compare detector response, signals, backgrounds
 - Systematics well under control
- Expected neutrino ratio: R(AD1/AD2) = 0.982
 - Not one due to a little different baselines, target masses.
- Measured ratio: $R(AD1/AD2) = 0.987 \pm 0.004(stat) \pm 0.003(syst)$

Nucl. Inst. and Meth. A 685 (2012), pp. 78-97

Recent progress

Manual calibration system deployed on AD1.

⁶⁰Co and ²³⁹Pu+¹³C source for data taken from Sep.3 to Sep.17, 2012.

Recent progress

