

New Result from MEG Experiment

W. Ootani ICEPP, University of Tokyo on behalf of MEG collaboration

Rencontres de Moriond EW 2013, La Thuile, Italy Mar.8th, 2013

1

µ→eγ

- **MEG searches for lepton flavor violating decay** $\mu \rightarrow e\gamma$ with an unprecedented sensitivity.
- **Why to look for \mu \rightarrow e\gamma?**
 - Possible to occur even within standard model but at immeasurably small rate due to small neutrino mass
 - Many well-motivated models of BSM physics predict measurable rate just below present experimental limit (B <2.4×10⁻¹², MEG in 2011).
 - If discovered, it would be an unambiguous evidence of BSM physics!

MEG Experiment

- World's most intense µ⁺ beam at Paul Scherrer Institute (PSI) (3×10⁷ µ⁺/sec at MEG)
- **Detectors**
 - 900L LXe γ-ray detector with PMT readout
 - Positron spectrometer (low-mass drift chamber system +fast timing counter in gradient B-field)

MEG History

- 1999: Approved at PSI
- -2007: Detector construction/commissioning/ engineering run
- 2008: DAQ started
- 2011: Published analysis result with 2009-2010 dataset (1.65×10¹⁴ µ⁺/s)
- 2013: New result (this work)
 - Combined analysis of data 2009-2011 (3.6×10¹⁴ µ⁺/s)
 - Improved analysis
 - 2009-2010 are also re-analyzed.

What's New in This Work

Hardware improvements in run 2011

- **I** Higher resolution BGO array detector introduced in LXe energy calibration with CEX reaction $(\pi^+p \rightarrow n\pi^0, \pi^0 \rightarrow 2\gamma)$
- New optical survey technique with laser tracker
- New data and new analysis with improved algorithms
 - Reduced drift chamber noise with FFT filtering
 - **Angular resolution improved by <10%**
 - Totally revised track fit algorithm based on Kalman filter technique
 - Reduced tail in response function, 7% better efficiency, per-event error matrix introduced to likelihood analysis
 - **Δ** Improved pileup elimination algorithm in LXe γ-detector
 - **Less pileup, 7% better efficiency**

Track Fit wit Kalman Filter

- Improved track fit algorithm with new Kalman filter
 - Better modeling for hit with GEANE
 - Better modeling for detector materials
 - Reduced tail and improved efficiency (7%)
- Per-event error matrix provided by Kalman filter is incorporated in likelihood analysis
 - Sensitivity is improved by about 10%.

Pileup Elimination

LXe γ-detector event display

- I5% probability of multiple BG γ-ray pileup at 3×10⁷ μ⁺/sec.
- Pileup events are NOT discarded by removing pileup-γ.
- Pileup-γ is identified and removed by using
 - Pattern in PMT light distribution
 - ☑ PMT waveform ←Improved with detailed waveform analysis
- Efficiency improved by 7% in new analysis

Physics Analysis Overview

Number of events / (0.5MeV

103

102

10

- Five observables (E_e , E_γ , $\theta_{e\gamma}$, $\phi_{e\gamma}$, $T_{e\gamma}$) to characterize $\mu \rightarrow e\gamma$ event
 - **Back-to-back** ($\theta_{e\gamma} = \Phi_{e\gamma} = 0$)
 - Monoenergetic $(E_e = E_Y = 52.8 \text{MeV}(= m_\mu/2))$
 - Coincident (T_{eγ}=0)
- Predominant BG: accidental overlap bw/ Michel e⁺ and γ (AIF, RMD, brems.)
- Maximum likelihood analysis to extract N_{sig}
- Blind analysis procedure applied to new data in 2011

Maximum Likelihood Analysis

- Maximum likelihood analysis to estimate # of signal
 - Analysis region
 - **a** $48 < E_{\gamma} < 58 \text{MeV}, 50 < E_{e} < 56 \text{MeV}, |\theta_{e\gamma}| < 50 \text{mrad}, |\Phi_{e\gamma}| < 50 \text{mrad}, |T_{e\gamma}| < 0.7 \text{ns}$
 - Event-by-event PDF
 - **Υ** γ: position dependent resolutions
 - 🗹 e: per-event error matrix from Kalman filter ← New

- **Confidence interval of N_{sig} (or \mathcal{B})**
 - **Frequentist approach with profile likelihood ratio ordering**
 - **V**_{RMD}, *N*_{BG} treated as nuisance parameters

$$\lambda_{p}(N_{sig}) = \frac{\mathcal{L}(N_{sig}, \widehat{N}_{RMD}(N_{sig}), \widehat{N}_{BG}(N_{sig}))}{\mathcal{L}(\widehat{N}_{sig}, \widehat{N}_{RMD}, \widehat{N}_{BG})}$$
* RMD: radiative muon decay

PDF

- Probability density functions (PDFs) for likelihood function are mostly extracted from data.
 - Signal: detector response function
 - **RMD:** Theoretical spectrum smeared by detector response
 - **BG: Single BG spectrum** measured at sidebands

Signal *E*_γ (55MeV-γ from π⁰-decay)

Sensitivity

- Sensitivity: 90% C.L. upper limit averaged over pseudoexperiments based on null-signal hypothesis with expected rates of RMD and BG.
- ~20% improvement in total with new algorithms
- **MEG** has started exploring $\mathcal{B} \sim 10^{-13}$ region!

	µ⁺ stops	Sensitivity
2009-2010	1.75×10 ¹⁴	1.3×10 ^{-12*}
2011	1.85×10 ¹⁴	. × 0 ⁻¹²
2009-2011	3.60×10 ¹⁴	7.7×10 ⁻¹³

Sideband Fit

- Likelihood analyses in fictitious analysis regions in sidebands.
 Off-time sideband 1.3<|Tey|<2.7ns
 Off-angle sideband 50<|θey|(|Φey|)<150mrad,
 Off-time sideband (2011 alone)
 Off-time sideband (2011 alone)
 Off-time sideband (2011 alone)
 Signal PDF control (1, 1, 64, 20)
 - Observed upper limits are consistent with sensitivity.

|*T*_{ey}|<0.7ns

nsec |*T*_{eγ}|<0.244ns, cos*Θ*_{eγ}<-0.9996 Signal PDF contour $(1, 1.64, 2\sigma)$ 54 55 -0.9995 -0.999 -0.9985 53 56 $\cos\Theta_{e\gamma}$ E e (MeV) Tev Ee 0.054 0.056 0.0 Samma Energy (GeV) altron Energy (GeV) **BG** (best fit) Signal (best fit) Total **Best fit** $N_{\text{signal}} = 0.8$ $\mathcal{B} = 2.1 \times 10^{-13}$ 𝔅<1.4×10⁻¹² (90%C.L.)

Event Distribution

Event Distribution

Likelihood Fit

Confidence Interval

- Confidence interval calculated with Feldman-Cousins method + profile likelihood ratio ordering
- Consistent with null-signal hypothesis

Likelihood Analysis Summary

Fit results on branching ratio						
	Best fit	Upper limit (90% C.L.)	Sensitivity			
2009-2010	0.09×10 ⁻¹²	1.3×10 ⁻¹²	1.3×10 ⁻¹²			
2011	-0.35×10 ⁻¹²	6.7×10 ⁻¹³	I.I×I0 ⁻¹²			
2009-2011	-0.06×10 ⁻¹²	5.7×10 ⁻¹³	7.7×10 ⁻¹³			

Upper limit from all combined dataset:

☑ ℬ<5.7×10⁻¹³ (90%C.L.)

×4 more stringent than the present upper limit

Consistency Check

- **Compatibility bw/ new and old analyses: 31%**
- Probability to observe UL equal or lower than observed in 2011: 24%

Quality Check

- NBG and NRMD are estimated in likelihood fit without imposing constraints from the rates expected from the time- and Ey-sideband measurements
- The estimates are in good agreement with the expectation.
- Validated our estimation on BG an RMD at sidebands

	Best Fit	Expected
BG	2411±57	2415±25
RMD	163±32	169±17

Constraints on BSM Physics

*a*_µ(SM):Hagiwara et al., JPG38(2011)085003

For More Details

arXiv:1303.0754 (submitted to Phys. Rev. Lett.)

New constraint on the existence of the $\mu^+ \rightarrow e^+ \gamma$ decay

J. Adam,^{1,2} X. Bai,³ A. M. Baldini^a,⁴ E. Baracchini,^{3,5,6} C. Bemporad^{ab},⁴ G. Boca^{ab},⁷ P. W. Cattaneo^a,⁷ G. Cavoto^a,⁸ F. Cei^{ab},⁴ C. Cerri^a,⁴ A. de Bari^{ab},⁷ M. De Gerone^{ab},⁹ T. Doke,¹⁰ S. Dussoni^a,⁴ J. Egger,¹ K. Fratini^{ab},⁹ Y. Fujii,³ L. Galli^a,^{1,4} G. Gallucci^{ab},⁴ F. Gatti^{ab},⁹ B. Golden,⁶ M. Grassi^a,⁴ A. Graziosi,⁸ D. N. Grigoriev,¹¹ T. Haruyama,⁵ M. Hildebrandt,¹ Y. Hisamatsu,³ F. Ignatov,¹¹ T. Iwamoto,³ D. Kaneko,³ P.-R. Kettle,¹ B. I. Khazin,¹¹ N. Khomotov,¹¹ O. Kiselev,¹ A. Korenchenko,¹² N. Kravchuk,¹² G. Lim,⁶ A. Maki,⁵ S. Mihara,⁵ W. Molzon,⁶ T. Mori,³ D. Mzavia,¹² R. Nardò,⁷ H. Natori,^{5,3,1} D. Nicolò^{ab},⁴ H. Nishiguchi,⁵ Y. Nishimura,³ W. Ootani,³ M. Panareo^{ab},¹³ A. Papa,¹ R. Pazzi^{ab},⁴ G. Piredda^a,⁸ A. Popov,¹¹ F. Renga^a,^{8,1} E. Ripiccini,⁸ S. Ritt,¹ M. Rossella^a,⁷ R. Sawada,³ F. Sergiampietri^a,⁴ G. Signorelli^a,⁴ S. Suzuki,¹⁰ F. Tenchini^{ab},⁴ C. Topchyan,⁶ Y. Uchiyama,^{3,1} R. Valle^{ab},⁹ C. Voena^a,⁸ F. Xiao,⁶ S. Yamada,⁵ A. Yamamoto,⁵ S. Yamashita,³ Z. You,⁶ Yu. V. Yudin,¹¹ and D. Zanello^{a8}

(MEG Collaboration)

¹Paul Scherrer Institut PSI, CH-5232 Villigen, Switzerland
 ²Swiss Federal Institute of Technology ETH, CH-8093 Zürich, Switzerland
 ³ICEPP, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
 ⁴INFN Sezione di Pisa^a; Dipartimento di Fisica^b dell'Università, Largo B. Pontecorvo 3, 56127 Pisa, Italy
 ⁵KEK, High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
 ⁶University of California, Irvine, CA 92697, USA
 ⁷INFN Sezione di Pavia^a; Dipartimento di Fisica^b dell'Università, Via Bassi 6, 27100 Pavia, Italy
 ⁸INFN Sezione di Roma^a; Dipartimento di Fisica^b dell'Università "Sapienza", Piazzale A. Moro, 00185 Roma, Italy
 ⁹INFN Sezione di Genova^a; Dipartimento di Fisica^b dell'Università, Via Dodecaneso 33, 16146 Genova, Italy
 ¹⁰Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
 ¹¹Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia

¹³INFN Sezione di Lecce^a; Dipartimento di Fisica^b dell'Università, Via per Arnesano, 73100 Lecce, Italy (Dated: March 4, 2013)

The analysis of a combined dataset, totaling 3.6×10^{14} stopped muons on target, in the search for the lepton flavour violating decay $\mu^+ \rightarrow e^+ \gamma$ is presented. The data collected by the MEG experiment at the Paul Scherrer Institut show no excess of events compared to background expectations and yield a new upper limit on the branching ratio of this decay of 5.7×10^{-13} (90% confidence level). This represents a four times more stringent limit than the previous world best limit set by MEG.

Prospects

MEG will continue DAQ till summer in 2013.

Data statistics will be doubled with 2012+2013(expected).

But this is not the end of the story...

MEG Upgrade

- MEG upgrade proposal approved at PSI in Jan. 2013
- **Upgraded** items
 - **G** Higher μ intensity
 - Single volume drift chamber with stereo angle wire configuration
 - Pixelated timing counter with SiPM readout
 - LXe detector with SiPM readout
 - **Thinner target**

MEG Upgrade

Upgraded MEG is expected to explore down to *B*~5×10⁻¹⁴ in three years!

X ×10 improvement w.r.t. current MEG

Construction

Eng.Run

Run

More details in arXiv:1301.7225

Expected performance

PDF parameters	Present MEG	Upgrade scenari
e ⁺ energy (keV)	306 (core)	130
$e^+ \theta$ (mrad)	9.4	5.3
$e^+ \phi$ (mrad)	8.7	3.7
e ⁺ vertex (mm) Z/Y(core)	2.4 / 1.2	1.6 / 0.7
$\gamma \text{ energy } (\%) (w < 2 \text{ cm})/(w > 2 \text{ cm})$	2.4 / 1.7	1.1 / 1.0
γ position (mm) $u/v/w$	5/5/6	2.6 / 2.2 / 5
γ -e ⁺ timing (ps)	122	84
Efficiency (%)		
trigger	≈ 99	≈ 99
γ	63	69
e ⁺	40	88
	MEG	upgrade
2013	2014	2015 2

Design

Projected sensitivity

Summary

- **MEG** has searched for lepton flavor violating decay, $\mu \rightarrow e\gamma$, with combined data sample for 2009-2011.
- The events observed in the dataset is found to be consistent with null-signal hypothesis.
- Established ×4 more stringent upper limit on branching ratio

☑ ℬ(μ⁺→e⁺γ)< 5.7×10⁻¹³ (90% C.L.)

- The data statistics is expected to be doubled by summer 2013.
- **MEG upgrade program has been approved by the PSI committee in Jan. 2013.**
- Upgraded MEG with an ultimate sensitivity (×10 higher than current MEG) is planned to start in 2016.

Thank You for Your Attention!

~60 physicists from 12 institutes from 5 countries

Backup Slides

Normalization

The Normalization to translate N_{sig} into \mathcal{B}

- **Two independent methods**
 - Michel positrons counted with dedicated trigger
 - **\Box** RMD rate observed at E_{γ} -sideband
- **Combined estimate results in 4% uncertainty**

$$\begin{split} N_{sig} &= N_{\mu} \times Br_{e\gamma} \times \tau_{e\gamma} \times \epsilon_{e\gamma}^{trig} \times G_{e\gamma}^{DC} \times A_{e\gamma}^{TC} \times \epsilon_{e\gamma}^{DC} \times A_{e\gamma}^{LXe} \times \epsilon_{e\gamma}^{LXe} \\ N_{e\nu\bar{\nu}} &= N_{\mu} \times Br_{e\nu\bar{\nu}} \times \tau_{e\nu\bar{\nu}} \times \epsilon_{e\nu\bar{\nu}}^{trig} \times G_{e\nu\bar{\nu}}^{DC} \times A_{e\nu\bar{\nu}}^{TC} \times \epsilon_{e\nu\bar{\nu}}^{DC} \times \epsilon_{e\nu\bar{\nu}}^{LXe} \times f_{e\nu\bar{\nu}}^{E} \times P \end{split}$$

$$BR(\mu^+ \to e^+ \gamma) = \frac{N_{\text{signal}}}{N_{e\nu\bar{\nu}}} \times \frac{f_{e\nu\bar{\nu}}^E}{P} \times \frac{\epsilon_{e\nu\bar{\nu}}^{\text{trig}}}{\epsilon_{e\gamma}^{\text{trig}}} \times \frac{A_{e\nu\bar{\nu}}^{\text{TC}}}{A_{e\gamma}^{\text{TC}}} \times \frac{\epsilon_{e\nu\bar{\nu}}^{\text{DCH}}}{\epsilon_{e\gamma}^{\text{DCH}}} \times \frac{1}{A_{e\gamma}^{\text{g}}} \times \frac{1}{\epsilon_{e\gamma}}$$

Event Distribution

A Collection of Observed Events

Run:102907 Event:559

 $(E_{\gamma}=50.27 \text{MeV}, E_{e}=52.34 \text{MeV}, T_{e\gamma}=-78.7 \text{ps}, \phi_{e\gamma}=17.83 \text{mrad}, \theta_{e\gamma}=7.77 \text{mrad})$

Systematics

- Systematic uncertainties of PDF parameters and normalization are taken into account by fluctuating PDFs in confidence interval calculation.
- The effect of systematic uncertainties is only 1% change in upper limit.

Effect on UL (change in ΔNLL)

Center of $\theta_{e\gamma}$ and $\phi_{e\gamma}$ Positron correlations E_{γ} scale E_{e} bias	$\begin{array}{c} 0.18 \\ 0.11 \\ 0.07 \\ 0.06 \\ 0.06 \end{array}$
Positron correlations E_{γ} scale E_{e} bias t_{e} signal shape	$\begin{array}{c} 0.11 \\ 0.07 \\ 0.06 \\ 0.06 \end{array}$
E_{γ} scale $E_{\rm e}$ bias $t_{\rm e}$ signal shape	$0.07 \\ 0.06 \\ 0.06$
$E_{\rm e}$ bias	$\begin{array}{c} 0.06 \\ 0.06 \end{array}$
t signal shape	0.06
$\iota_{e\gamma}$ signal shape	
$t_{\rm e\gamma}$ center	0.05
Normalization	0.04
E_{γ} signal shape	0.03
E_{γ} BG shape	0.03
Positron angle resolutions ($\theta_{\rm e}, \phi_{\rm e}, z_{\rm e}, y_{\rm e}$)	0.03
γ angle resolution $(u_{\gamma}, v_{\gamma}, w_{\gamma})$	0.03
$E_{\rm e}$ BG shape	0.01
$E_{\rm e}$ signal shape	0.01
Angle BG shape	0.00
Total	0.25