DIPARTIMENTO DI SCIENZE DI BASE E APPLICATE PER L'INGEGNERIA

Rencontres de Moriond EW 2013

Latest results on B_(s)⁰→µµ and other very rare decays

A. Sarti

on behalf of the LHCb collaboration

Dipartimento di Scienze di Base e Applicate per l'Ingegneria (Università di Roma "La Sapienza") and LNF - INFN, Italy

A rare beauty!

- LHCb pursues a physics program aiming to a precise validation of SM predictions and indirect NP searches in the heavy flavor sector, which is fully complementary to direct NP searches done with GP experiments
- A key role is played by B decays occurring trough $\Delta B = \Delta S = 1$ transitions, which are highly suppressed in SM (FCNC) and are thus sensitive probes of NP

Two distinct theoretical approaches can be followed:

LHCb: a golden mine for rare B decays

Rare decays:

- Radiative decays: (K* $^{0}\gamma$, $\varphi\gamma$) [Nucl. Phys., Sect. B 867 (2013), pp. 1-18]
- B → XII decays: B → K^(*)μμ, B → φμμ [Phys. Rev. Lett. 110, 031801 (2013), JHEP 02 (2013) 105]; B → πμμ [JHEP 12 (2012) 125]
- Ongoing analyses: $D^0 \rightarrow \mu\mu$, $t \rightarrow 3\mu$, $B_{(s)}^0 \rightarrow e\mu$

In this presentation:

- B \rightarrow 4 μ and K_s $\rightarrow \mu\mu$: latest results on 1 fb⁻¹ 2011 dataset
- $B_{(s)}^{0} \rightarrow \mu\mu$. LHC combination (Jun '12): BR($B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$) < 4.2×10⁻⁹ @ 95% CL. Today I present here the **latest** result on 2.1 fb⁻¹ 2011/12 dataset (published in Jan '13)

fb⁻¹ at 7 TeV (2011) 2 fb⁻¹ at 8 TeV (2012): only ~50% (1.1 fb⁻¹) used for published results so far

03/03/13 A. Sarti

1 fb⁻¹

collected but

- B \rightarrow 4 μ decays in SM:

- Non resonant BR($B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}\gamma^{*}(\mu^{+}\mu^{-})) < 10^{-10}$ [D. Melikhov and N. Nikitin, Phys. Rev. D 70 (2004) 114028]
- B_s⁰ → J/ψφ (control) channel =
 2.3 ± 0.9 10⁻⁸ [Phys. Rev. D86 (2012) 010001]
- In MSSM: sensitive to new scalar (S) and pseudoscalar (P) sGoldstino particles
- → Normalization on $B^0 \rightarrow J/\psi(\rightarrow \mu\mu)K^{*0}(\rightarrow K\pi)$
- Result: observed 1 event in B⁰ window,
 0 in B_s⁰. Consistent with expected bkg.
- [preliminary] Limits at 95(90)% C.L.:
 - BR ($B_s^0 \rightarrow 4\mu$) < 1.6 (1.2) $\cdot 10^{-8}$
 - BR ($B^0 \rightarrow 4\mu$) < 6.6 (5.3) $\cdot 10^{-9}$

Paper in preparation

First experimental limit to date

03/03/13 A. Sarti

Moriond EW 2013

5

→ The SM prediction for BR(K_s → $\mu^{+}\mu^{-}$) is 5.1 ± 1.5 10⁻¹² [NuPh B366(1991) 189; JHEP 0401 (2004) 009]. Best exp. limit ('73) < 3.2 10⁻⁷ @ 90% CL [PL B44 (1973) 217]

 $K_s \rightarrow \mu\mu$

- Comparison with $K_L \rightarrow \mu^* \mu^r$ can reveal effects due to new light scalars and bounds at 10^{-11} level constrain CP violating phase from $s \rightarrow dl\bar{l}$ (E.g.: $K \rightarrow \pi \nu \bar{\nu}$)

Limit is computed using the CLs (modified frequentist) approach [J. Phys. G28 (2002) 2693]

$B_{(s)}^{0} \rightarrow \mu\mu$ in the Standard Model

 FCNC process \rightarrow very small branching fraction:

 $\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-)^{\dagger = 0} = (3.23 \pm 0.27) \cdot 10^{-9}$

 Buras et al.,

 $\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-)^{\dagger = 0} = (1.07 \pm 0.10) \cdot 10^{-10}$

The authors used f_{Bs} = (227±8) MeV, averaging from recent lattice inputs Mc Neile et al., PRD 85 (2012) 031503 Na et al., arXiv:1202.4914 Bazavov et al., arXiv:1112.3051

To compare with experiment need a time integrated branching fraction, taking into account the finite width of the B^{0}_{s} system:

$$\begin{aligned} \mathcal{B}(B_s^0 \to \mu^+ \mu^-) \stackrel{\langle \dagger \rangle}{=} &= \frac{1}{1 - y_s} \cdot \mathcal{B}(B_s^0 \to \mu^+ \mu^-) \stackrel{\dagger = 0}{=} \underbrace{y_s = \Delta \Gamma_s / 2\Gamma_s}_{\text{O41801 (2012)}} \\ &= \underbrace{(3.54 \pm 0.30) \cdot 10^{-9}}_{\text{uses LHCb-CONF-2012-002}} \end{aligned}$$

$B_{(s)}^{0} \rightarrow \mu\mu$ analysis

Performed on full 2011 [@ 7 TeV] data (reanalyzed, with improved bkg evaluation), and **1.1 fb⁻¹ of 2012** [@ 8 TeV] **sample (~50% of available statistics)**: 8 TeV data signal region kept blind until analysis completion

- Signal/Background separation by invariant di- μ mass (IM) and a multivariate (MVA) classifier (Boosted Decision Trees, BDT) BDT training on MC signal and bkg BDT calibration on data: for signal used exclusive $B^{0}(s) \rightarrow h^{+}h^{-}$ channels (h= π , K)
- Normalization with $B^{\pm} \rightarrow J/\psi K^{\pm} \& B^{0} \rightarrow K^{+}\pi^{-}$ $B^{0}_{s} \rightarrow J/\psi \phi$ was dropped for 2012 data as third normalization channel, but used to check Js dependence of f_{s}/f_{d}
- Analysis performed in 7(8) bins of BDT and
 9 bins of IM for the analysis of 8(7) TeV
 data

Normalization

 $B^{\pm} \rightarrow J/\psi K^{\pm}$ and $B^{0} \rightarrow K^{+}\pi^{-}$ channels give consistent results, and are averaged

$$\begin{aligned} \alpha_{B_s^0 \to \mu^+ \mu^-} &= (2.80 \pm 0.25) \times 10^{-10} \\ \alpha_{B^0 \to \mu^+ \mu^-} &= (7.16 \pm 0.34) \times 10^{-11} \end{aligned} 8 \text{ TeV data} \end{aligned}$$

Assuming SM rates, after selection we expect in 7 TeV + 8 TeV data (1.0 + 1.1 fb⁻¹) ~11+13 $B^0_s \rightarrow \mu^+\mu^-$ and ~1.3+1.5 $B^0 \rightarrow \mu^+\mu^$ in signal region (m($B^0_{(s)}$)±60 MeV/c²)

03/03/13 A. Sarti

Moriond EW 2013

Combinatorial background

The main background source in the $B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$ signal window, m(B^{0}_{s})±60 MeV/c², is combinatorial from bb $\rightarrow \mu^{+}\mu^{-}X$

For the CL_s computation, the expected background yield in the signal region is evaluated from a fit to the mass sidebands, for each BDT bin separately

An exponential shape is used to model the combinatorial bkg

For BDT values <0.5 this is by far the dominant bkg source

Exclusive background sources

Various exclusive decays have been studied which are able to fake a signal by misID of either one or two hadrons or by two muons coming from the same vertex:

- $B^{0} \rightarrow \pi^{-}\mu^{+}\nu_{\mu} \qquad B^{0}{}_{s} \rightarrow K^{-}\mu^{+}\nu_{\mu} \qquad B^{+(0)} \rightarrow \pi^{+(0)}\mu^{+}\mu^{-}$
- $\Lambda^{0}_{b} \rightarrow p\mu^{-}v_{\mu} \qquad B^{0}_{(s)} \rightarrow h^{+}h^{\prime-} \qquad B^{+}_{c} \rightarrow J/\psi(\mu^{+}\mu^{-})\mu + v_{\mu}$

(other channels like $B \to (D \to \mu X) \mu X, B \to \tau \tau X$ being negligible in [4900-6000] MeV/c² ...)

These background sources can affect the result in two ways:

1) non negligible contribution in the signal mass window, $m(B^{0}_{(s)})\pm 60 \text{ MeV/c}^{2}$ only $B^{0}_{(s)} \rightarrow h^{+}h^{'-}$ has to be accounted for (mainly for B^{0}): take $K \rightarrow \mu$ and $\pi \rightarrow \mu$ from data, fold with MC spectra. In the full BDT range, for 8 TeV data we get:

Events in B_{s}^{0} 0.76^{+0.26}-0.18 Events in B_{d}^{0} 4.1^{+1.7}-0.8 mass window

2) mass shape different from exponential → bias in the combinatorial background interpolation from mass sidebands

Three dominant components have been added: $B^{0} \rightarrow \pi^{-}\mu^{+}\nu_{\mu} B^{+(0)} \rightarrow \pi^{+(0)}\mu^{+}\mu^{-} B^{0}_{(s)} \rightarrow h^{+}h^{-}$

Unblinded 8 TeV data

B⁰_s→µ⁺µ⁻ candidate

R. Aaij et al. (LHCb Collaboration) Phys. Rev. Lett. **110**, 021801 (2013)

BR $(B^{0}(s) \rightarrow \mu^{+}\mu^{-})$ results R. Aaij et al. (LHCb Collaboration) Phys. Rev. Lett. 110, 021801 (2013)

Use CLs method to evaluate compatibility with background only (CL_b) and signal + background hypotheses (CL_{s+b}); the 95% CL upper limit is defined at $CL_s = CL_{s+b}/CL_b = 0.05$

double-sided limit: $1.1 \times 10^{-9} < B(B^{0} \rightarrow \mu^{+} \mu^{-}) < 6.4 \times 10^{-9}$ at 95% CL

where the lower and upper limits are evaluated at $CL_{s+b} = 0.975$ and $CL_{s+b} = 0.025$, respectively

Unbinned maximum likelihood fit to the mass spectra

- 7 TeV and 8 TeV data are treated simultaneously
- mass range [4900-6000] MeV/c²
- Free parameters:
 - BR($B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$), BR($B^{0} \rightarrow \mu^{+}\mu^{-}$) and combinatorial background
 - The relative signal yield in each BDT bin is constrained to the expectation from B⁰(s)→ h⁺h'⁻ calibration,

 $B^{O}_{s} \rightarrow \mu^{+}\mu^{-}$: BR fit

- The yields and pdf's for all of the relevant exclusive backgrounds are constrained to their expectations

 Additional systematic studies on background composition/ parameterization:

- add the $B^{0}_{s} \rightarrow K^{-}\mu^{+}\nu_{\mu}$ component to the exclusive background
- change the combinatorial pdf from single to double exponential, to account for possible residual contributions from Λ^0_b and B^+_c decays

Combined dataset result

syst from nuisance parameters and background models:

 $BR = (3.2^{+1.4} - 1.2 (stat)^{+0.5} - 0.3 (syst)) \times 10^{-9} \text{ fully dominated by stat error}$ $BR(B^{0}_{s} \rightarrow \mu^{+}\mu^{-}) = (3.2^{+1.5} - 1.2) \times 10^{-9} \qquad \qquad SM \text{ expectation}$ $(3.54 \pm 0.30) \times 10^{-9}$

Summary & outlook

LHCb is contributing to the rare decays exp. knowledge with a lot of NEW high precision/sensitivity results..

for BR($B^0 \rightarrow 4\mu$) and BR($B^0 \rightarrow 4\mu$) the FIRST limits 1.6×10⁻⁸ & 0.63×10⁻⁸ @ 95% CL have been obtained!

The limit on the BR ($K_s^0 \rightarrow \mu^+\mu^-$) has been improved a factor 30 w.r.t previous best limit: BR ($K_s^0 \rightarrow \mu^+\mu^-$) < 11(9) \cdot 10⁻⁹ at 95(90)% C.L.

In nov '12 the first evidence of $B^{0} \rightarrow \mu^{+} \mu^{-}$ decay [3.5 σ] was found ending a 25 years exp. campaign!

The max likelihood fit result is $BR(B^{0}_{s} \rightarrow \mu^{+}\mu^{-}) = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$ in agreement with SM expectation

LHCb also set the most stringent limit on $B^0 \rightarrow \mu^+\mu^-$ decay: BR($B^0 \rightarrow \mu^+\mu^-$) < 9.4×10⁻¹⁰ at 95% CL

We are getting ready for another analysis round on the final full 2011+2012 (~3 fb⁻¹) dataset!

Glimpse on the future

2012: LHCb Upgrade Framework TDR

http://cdsweb.cern.ch/record/1443882/files/LHCB-TDR-012.pdf

year	2011	2012	2015-2017	upgrade
√s	7	8	13	14
Lint	1	1.5(*)	4	50

(*) we actually collected 2!

The integrated statistics used in the uncertainty extrapolation for 2018 and the upgrade (2028) are respectively $L_{int} = 7 \text{ fb}^{-1}$ and $L_{int} = 50 \text{ fb}^{-1}$

Observable	Current	LHCb	Upgrade	Theory
	precision	2018	$(50{\rm fb}^{-1})$	uncertainty
$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	1.5×10^{-9} [2]	$0.5 imes 10^{-9}$	$0.15 imes 10^{-9}$	$0.3 imes 10^{-9}$
$\mathcal{B}(B^0 ightarrow \mu^+ \mu^-) / \mathcal{B}(B^0_s ightarrow \mu^+ \mu^-)$	_	$\sim 100\%$	$\sim 35\%$	$\sim 5\%$

Extrapolation from 2011 Published analysis (1.5 10^{-9} precision) where the stat. uncertainty is scaled as $\int N$.

Datasets

The updated $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ search uses the following datasets: 1.0 fb⁻¹ at 7 TeV (2011) + 1.1 fb⁻¹ at 8 TeV (2012)

Signal discrimination: BDT

Discrimination is achieved by a BDT with 9 input variables

B candidate:

- proper time
- impact parameter
- transverse momentum
- B isolation

muons:

- min p_T
- min IP significance
- distance of closest approach
- muon isolation,
- cosP

this choice of variables avoids correlation with invariant mass

03/03/13 A. Sarti

Moriond EW 2013

b fragmentation: fs/fd LHCb measured has 2 independent measurements (at 7 TeV): - ratio of $B^{0}_{s} \rightarrow D_{s}\mu X$ to $B \rightarrow D^{+}\mu X$ [PRD85 (2012) 032008] - ratio of $B^0_s \rightarrow D^-_s \pi^+$ to $B^0 \rightarrow D^- K^+$ and $B^0 \rightarrow D^- \pi^+$ [LHCb-PAPER-2012-037 in preparation] updated at HCP new $\int_{s}^{p} \frac{0.6}{f_{s}}$ Combined result at 7 TeV LHCb $f_s/f_d = 0.256 \pm 0.020$ 0.4 0.3 0.2 Found to be moderately dependent on p_{T} : effect $\leq 1\sigma$ for the considered p_T 0.1 range → dependence is ignored 10000 20000 30000 40000 Ó) $p_{\rm T}(B)$ [MeV/c]

For 8 TeV data, we checked the Js dependence of f_s/f_d by looking at $B^0_s \rightarrow J/\psi \phi / B^{\pm} \rightarrow J/\psi K^{\pm}$ ratio and found it stable within 1.5 σ

Exclusive background sources

All the relevant exclusive backgrounds were included as separate component in the fit

- Invariant mass and BDT distributions from high statistics MC samples, weighted by misID probabilities measured on data
- Expected yields evaluated by normalizing to $B^{\pm} \to J/\psi K^{\pm}$

dominant channels:

Yields for [4900-6000] MeV/c², and BDT>0.8

$B_0 \rightarrow \pi_{\mu} h_{\mu}$	4.04 ± 0.28				
$B^{+(0)} \rightarrow \pi^{+(0)}\mu^{+}\mu^{-}$	1.32 ± 0.39				
B⁰ _(s) → h+h'-	1.37 ± 0.11				

these decays are included in the mass sideband fits (constrained to their expected yields)

systematic studies to evaluate the effect of the subdominant channels

Status of $B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$ search

LHC combination (June 2012): BR($B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$)<4.2×10⁻⁹ at 95% CL

LHCb-CONF-2012-017 CMS-PAS-BPH-12-009 ATLAS-CONF-2012-061

B⁰_s→µ⁺µ⁻ beyond SM

$$\mathsf{BR}(B_s \to \mu^+ \mu^-) \propto |C_s - C'_s|^2 \left(1 - \frac{4m_{\mu}^2}{m_{B_s}^2}\right) + |(C_P - C'_P) + \frac{2m_{\mu}}{m_{B_s}^2}(C_{10} - C'_{10})|^2$$

Scalar Wilson coefficients C_S , C_P : Virtually unconstrained by other proc. Possibility of large effects ruled out at LHCb Vector-Axial Wilson coefficients C_{10} : Only C_{10} non-zero in the SM, constr. by b \rightarrow sl⁺l⁻ Start to be probed only now

Model independent view:

use all experimental info from $B \rightarrow X_s \ |^{+}|^{-}$, $B \rightarrow X_s \gamma$, $B \rightarrow K^* \mu^+ \mu^-$, $B \rightarrow K \mu^+ \mu^-$ and $B \rightarrow \mu^+ \mu^-$ to set model-independent constraints on Wilson coefficients

Altmannshofer, Paradisi, Straub	arXiv:1111.1257
Bobeth, Hiller, van Dyk, Wacker	arXiv:1111.2558
Descotes-Genon, Ghosh, Matias, Ramon	arXiv:1104.3342

In the most general case, every value of $B(B_s \rightarrow \mu^+\mu^-)$ below present limit is possible without conflicting with the other observables

$B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$ beyond SM

Model dependent views

CMSSM and NUHM1 predictions on BR($B^{0}_{s} \rightarrow \mu^{+}\mu^{-})_{NP}/BR(B^{0}_{s} \rightarrow \mu^{+}\mu^{-})_{SM}$ including last constraints on Higgs (Buchmueller et al., arXiv:1112.3564v2, May 2012)

NP enhancements of $BR(B_s \rightarrow \mu^*\mu^-)$ are constrained to be smaller or at the same level than the SM prediction. There still remains, however, room for a contribution from physics beyond the Standard Model.

 $B^{\circ}_{s} \rightarrow \mu^{+}\mu^{-}$: 7 TeV vs 8 TeV

7 TeV (1 fb⁻¹): BR(B⁰_s $\rightarrow \mu^{+}\mu^{-}$) = (1.4^{+1.7}_{-1.3})×10⁻⁹ p-value: 0.11 8 TeV (1.1 fb⁻¹): BR(B⁰_s $\rightarrow \mu^{+}\mu^{-}$) = (5.1^{+2.4}_{-1.9})×10⁻⁹ p-value: 9×10⁻⁴

results from 7 TeV and 8 TeV are compatible at $\sim 1.5\sigma$

7 TeV alphas
$$\begin{aligned} \alpha_{B^0_s \to \mu^+ \mu^-} &= (3.19 \pm 0.28) \times 10^{-10} \\ \alpha_{B^0 \to \mu^+ \mu^-} &= (8.38 \pm 0.39) \times 10^{-11} \end{aligned}$$

Exclusive backgrounds

Measurements:

$$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) = (2.3 \pm 0.6 \text{(stat.)} \pm 0.1 \text{(syst.)}) \cdot 10^{-8}$$
 LHCb collab., arXiv:1210.2645

$$f_c \cdot \mathcal{B}(B_c^+ \to J/\psi l^+ \nu X) = 5.2^{+2.4}_{-2.1} \cdot 10^{-5}$$

 $B^0 \rightarrow \pi \mu v_{\mu}$ and $B^0(s) \rightarrow h^+ h'^-$

CDF collab., PRL 81 (1998) 2432

Particle Data Group

Theoretical estimates:

$$\frac{\mathcal{B}(B^0 \to \pi^0 \mu^+ \mu^-)}{\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-)} = 0.47^{+0.22}_{-0.18}$$

 $B(B^{0}_{s} \rightarrow K^{-}\mu^{+}\nu_{\mu}) = (1.27\pm0.49) \times 10^{-4}$

$$\begin{split} \mathcal{B}(\Lambda_b^0 \to p \mu^- \nu) &= (1.59 \pm 0.84) \cdot 10^{-4} \\ \text{Updated result from Wang [~4} \\ 10^{-4} \text{ will be used in next round]} \end{split}$$

03/03/13 A. Sarti

Moriond EW 2013

W.-F. Wang and Z.-J. Xiao, arXiv:1207.0265

W.-F. Wang and Z.-J. Xiao, arXiv:1207.0265

A. Datta, arXiv:hep-ph/9504429 I. Bigi et al., JHEP 1109 (2011) 012

Limits and sensitivity

$B^0 \rightarrow \mu^+ \mu^-$

UL are quoted at 95%CL

	Expected UL (bkg)	Expected UL (SM+bkg)	Observed UL	Observed 1-CLb	
7 TeV	9.4 × 10 ⁻¹⁰ *	10.5 × 10 ⁻¹⁰ *	13.0 × 10 ⁻¹⁰ *	0.19 *	*published results:
8 TeV	9.6 × 10 ⁻¹⁰	10.5 × 10 ⁻¹⁰	12.5 x 10 ⁻¹⁰	0.16	UL = 10.3 x 10 ⁻¹⁰ 1-CLb = 0.60
7TeV + 8TeV	6.0 × 10 ⁻¹⁰	7.1 × 10 ⁻¹⁰	9.4 × 10 ⁻¹⁰	0.11	

 $B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$

7 TeV

1-CLb = 0.11

UL = 5.1×10⁻⁹ at 95% CL

to be compared with published:

1-CLb = 0.18

UL = 4.5 x 10⁻⁹ at 95% CL

Observed and expected events

Mode	BDT bin	0.0 - 0.25	0.25 - 0.4	0.4 - 0.5	0.5 - 0.6	0.6 - 0.7	0.7 - 0.8	0.8 - 0.9	0.9 - 1.0
$\overline{P_{\mu}^{0}}$ $\mu^{\pm}\mu^{\pm}$	Euro comb blue	1000+33	EE E+3.0	10 1+1.4	4 16+0.88	1 01+0.62	0.77+0.52	0.47+0.48	0.04+0.44
$B_s^* \to \mu^+ \mu$	Exp. comb. bkg	1880-33	$55.5^{+2.9}_{-2.9}$	$12.1^{+}_{-1.3}$	4.10_0.79	1.81_0.51	$0.77_{-0.38}$	$0.47_{-0.36}$	$0.24_{-0.20}$
(2011)	Exp. peak. bkg	$0.13\substack{+0.07\\-0.05}$	$0.07\substack{+0.02\\-0.02}$	$0.05\substack{+0.02\\-0.02}$	$0.05\substack{+0.02\\-0.01}$	$0.05\substack{+0.02\\-0.01}$	$0.05\substack{+0.02\\-0.01}$	$0.05\substack{+0.02\\-0.01}$	$0.05\substack{+0.02\\-0.01}$
	Exp. signal	$2.70\substack{+0.81 \\ -0.80}$	$1.30\substack{+0.27\\-0.23}$	$1.03\substack{+0.20\\-0.17}$	$0.92\substack{+0.15\\-0.13}$	$1.06\substack{+0.17\\-0.15}$	$1.10\substack{+0.17\\-0.15}$	$1.26\substack{+0.20 \\ -0.17}$	$1.31\substack{+0.28 \\ -0.25}$
	Observed	1818	39	12	6	1	2	1	1
$B^0 \rightarrow \mu^+ \mu^-$	Exp. comb. bkg	$1995\substack{+34 \\ -34}$	$59.2\substack{+3.3 \\ -3.2}$	$12.6\substack{+1.6\\-1.5}$	$4.44\substack{+0.99\\-0.86}$	$1.67\substack{+0.66\\-0.54}$	$0.75\substack{+0.58 \\ -0.40}$	$0.44\substack{+0.57\\-0.38}$	$0.22\substack{+0.48\\-0.20}$
(2011)	Exp. peak. bkg	$0.78\substack{+0.38 \\ -0.29}$	$0.40\substack{+0.14 \\ -0.10}$	$0.31\substack{+0.11 \\ -0.08}$	$0.28\substack{+0.09 \\ -0.07}$	$0.31\substack{+0.10 \\ -0.08}$	$0.30\substack{+0.10 \\ -0.07}$	$0.31\substack{+0.10 \\ -0.08}$	$0.30\substack{+0.11 \\ -0.08}$
	Exp. cross-feed	$0.43\substack{+0.13 \\ -0.13}$	$0.21\substack{+0.04 \\ -0.04}$	$0.16\substack{+0.03 \\ -0.03}$	$0.15\substack{+0.03 \\ -0.02}$	$0.17\substack{+0.03 \\ -0.03}$	$0.17\substack{+0.03 \\ -0.02}$	$0.20\substack{+0.03 \\ -0.03}$	$0.21\substack{+0.05 \\ -0.04}$
	Exp. signal	$0.33\substack{+0.10\\-0.10}$	$0.16\substack{+0.03 \\ -0.03}$	$0.13\substack{+0.02\\-0.02}$	$0.11\substack{+0.02\\-0.02}$	$0.13\substack{+0.02\\-0.02}$	$0.13\substack{+0.02\\-0.02}$	$0.15\substack{+0.02\\-0.02}$	$0.16\substack{+0.03 \\ -0.03}$
	Observed	1904	50	20	5	2	1	4	1
Mode	BDT bin	0.0 - 0.25	0.25 - 0.4	0.4 - 0.5	0.5 - 0.6	0.6 - 0.7	0.7 - 0.8	0.8	-1.0
$B_s^0 \to \mu^+ \mu^-$	Exp. comb. bkg	2345_{-40}^{+40}	$56.7^{+3.0}_{-2.9}$	$13.1^{+1.5}_{-1.4}$	$4.42\substack{+0.91\\-0.81}$	$2.10^{+0.67}_{-0.56}$	$0.35\substack{+0.42\\-0.22}$	0.39	$^{+0.33}_{-0.21}$
(2012)	Exp. peak. bkg	$0.250\substack{+0.08\\-0.07}$	$0.15\substack{+0.05 \\ -0.04}$	$0.08\substack{+0.03 \\ -0.02}$	$0.08\substack{+0.02\\-0.02}$	$0.07\substack{+0.02 \\ -0.02}$	$0.06\substack{+0.02\\-0.02}$	0.10	$^{+0.03}_{-0.03}$
	Exp. signal	$3.69\substack{+0.59\\-0.52}$	$2.14\substack{+0.37\\-0.33}$	$1.20\substack{+0.21 \\ -0.18}$	$1.16\substack{+0.18 \\ -0.16}$	$1.17\substack{+0.18 \\ -0.16}$	$1.15\substack{+0.19 \\ -0.17}$	2.13	$^{+0.33}_{-0.29}$
	Observed	2274	65	19	5	3	1		3
$B^0 ightarrow \mu^+ \mu^-$	Exp. comb. bkg	2491^{+42}_{-42}	$59.5\substack{+3.3 \\ -3.2}$	$13.9^{+1.6}_{-1.5}$	$4.74^{+1.00}_{-0.89}$	$2.10\substack{+0.74 \\ -0.61}$	$0.55\substack{+0.50 \\ -0.31}$	0.29	$^{+0.34}_{-0.19}$
(2012)	Exp. peak. bkg	$1.49\substack{+0.50\\-0.36}$	$0.86\substack{+0.29 \\ -0.22}$	$0.48\substack{+0.16 \\ -0.12}$	$0.44\substack{+0.15\\-0.11}$	$0.42\substack{+0.14\\-0.10}$	$0.37\substack{+0.13 \\ -0.09}$	0.62	+0.21 -0.15
	Exp. cross-feed	$0.63\substack{+0.10 \\ -0.09}$	$0.36\substack{+0.07 \\ -0.06}$	$0.20\substack{+0.04\\-0.03}$	$0.20\substack{+0.03\\-0.03}$	$0.20\substack{+0.03\\-0.03}$	$0.20\substack{+0.03\\-0.03}$	0.36	$3^{+0.06}_{-0.05}$
	Exp. signal	$0.44\substack{+0.06\\-0.06}$	$0.26\substack{+0.04 \\ -0.04}$	$0.14\substack{+0.02\\-0.02}$	$0.14\substack{+0.02\\-0.02}$	$0.14\substack{+0.02\\-0.02}$	$0.14\substack{+0.02\\-0.02}$	0.26	$^{+0.04}_{-0.03}$
	Observed	2433	59	19	3	2	2		2

03/03/13 A. Sarti

TeV

TeV

Fit results for all BDT bins

17/12/2012

A. Sarti

30