

EXO-200 First $0\nu\beta\beta$ result

48th Rencontres de Moriond David Auty for the EXO Collaboration University of Alabama 5th March 2013

What is $\beta\beta$ decay

- A second order weak interaction where two neutrons turn into two protons
- Only allowed for nuclei where beta decay is energetically forbidden or highly suppressed due to a large angular momentum difference

2 ways for $\beta\beta$ to occur

B: Baryon Number L: Lepton Number

David Auty 48th Rencontres de Morind

How do we Measure the Rate?

1/2

To maximize sensitivity:

- •Large mass
- Low background
- •High detection efficiency
- •Good energy resolution

$$S_{1/2}^{0\nu}\propto \varepsilon \frac{a}{A} \left[\frac{MT}{B\Gamma}\right]$$

Elliot, S. et al., Annu. Rev. Nucl. Part. Sci. 2002. 52:115–51

Summed electron energy in units of the kinematic endpoint (Q)

 ε is efficiency *a* is isotopic abundance *A* is atomic mass *M* is source mass *T* is time *B* is background Γ is resolution

Why xenon-136

- It has a reasonable Q-value 2457.9±0.4keV
- Xenon can be continuously purified and recyclable (no crystal growth)
- Allows charge drift and scintillates
- Cost effective to enrich as Xe-136 is the heaviest long lived isotope
- No long lived Xe isotopes
- Potential to tag Ba-136 daughter nuclei
- Monolithic detector as liquid Xe is self shielding

EXO-200 installation site: WIPP

- EXO-200 installed at WIPP (Waste Isolation Pilot Plant), in Carlsbad, NM
- 1600 mwe flat overburden (2150 feet, 650 m)
- U.S. DOE salt mine for low-level radioactive waste storage
- Cleanroom installed on adjustable stands to compensate salt movements.
- Salt "rock" low activity relative to hardrock mine

 $\Phi_{\mu} \sim 1.5 \times 10^5 yr^{-1}m^{-2}sr^{-1}$ $U \sim 0.048 ppm$ $Th \sim 0.25 ppm$ $K \sim 480 ppm$

Esch et al., arxiv:astro-ph/0408486 (2004)

EXO-200 Time Projection Chamber (TPC) Basics

Simulation of Charge Drift

- Two TPC modules with common cathode in the middle.
- APD array observes prompt scintillation for drift time measurement.
 - From which the Z-position can be calculated
- V-position given by induction signal on shielding grid.
- U-position and energy given by charge collection grid.

Rn Content in Xenon

α: strong light signal, weak charge signalβ: weak light signal, strong charge signal

- Charge to Light ratio is a powerful tool for decimating between alpha and beta events.
- Using the Bi-Po (Rn daughter) coincidence technique, we can estimate the Rn content in our detector.

Combining Ionization and Scintillation

Energy Calibrations

David Auty 48th Rencontres de Morind

EXO-200 Low-Background Run I Results

	Run I	Run 2 (this analysis)	
Period	May 21, 11 – Jul 9, 11	Sep 22, 11 – Apr 15,12	
Live Time	752.7 hr	2,896.6 hr	
Exposure (¹³⁶ Xe)	4.4 kg-yr	26.3 kg-yr	
Publ.	PRL 107 (2011) 212501	PRL 109 (2012) 032505	

Run I Results:

$$T_{1/2}^{2\nu\beta\beta}$$
 (¹³⁶Xe) = (2.11 ± 0.04 stat ± 0.21 sys) · 10²¹ yr

In disagreement with previously reported limits by R. Bernabei et al. Phys. Lett. B 546 (2002) 23, and Yu. M. Gavriljuk et al., Phys. Atom Nucl. 69 (2006)

This was also a measurement of a nuclear matrix element of 0.019 MeV⁻¹, the smallest measured among the $2\nu\beta\beta$ emitters

```
Result Confirmed by KamLAND-ZEN, Phys.Rev.C85:045504,2012
```

David Auty 48th Rencontres de Morind

Low Background 2D SS Spectrum

Events removed by diagonal cut:

• alpha events (they leave large ionization density, which leads to more recombination, which means more scintillation light)

• events near edge of detector, where not all the charge ends up on the collection wires

Low Background Spectrum

 $T_{1/2}^{2\nu\beta\beta}$ (¹³⁶Xe) = (2.23 ± 0.017 stat ± 0.22 sys)·10²¹ yr (In agreement with our previously reported measurement)

- Trigger fully efficient above 700 keV
- Low background run livetime: 120.7 days
- Active mass: 98.5 kg LXe (79.4 kg ¹³⁶LXe)
- Exposure: 32.5 kg·yr
- Total dead time (vetos): 8.6%
- Various background Probability Density Functions fitted along with 2vββ and 0vββ PDFs

Low Background Spectrum

Zoomed around $0\nu\beta\beta$ region of interest (ROI)

¹⁶

nEXO

- Next Enriched Xenon Observatory
- will be a tonne scale detector
 - ~5 tonne Xe expriment
 - initially without Ba tagging
 - but remaining an option in the future
- Assume
 - 4 tonnes active ^{enr}Xe (80% or higher)
 - 1.4% (σ) energy resolution
 - oberved EXO-200 backgrounds minous the Rn in the shield
 - $\beta\beta$ -scales like the volume, the background like the surface are
 - assumes equal materials and thickness

EXO-200 and nEXO projected sensitivities

The horizontal bands represent the envelopes of the 90% CL limits expected (or obtained For the top-most) assuming various NME calculations and assuming that no signal as detected

The EXO-200 "Present limit" is from PRL 109 (2012) 032505

The EXO-200 "Ultimate" sensitivity: 4 yrs livetime with new analysis & Rn removal.

The "Initial nEXO" band refers to a detector directly scaled from EXO-200, including its measured background and 10yr livetime.

The "Final nEXO" band refers to the same detector and no

Summary

- $0\nu\beta\beta$ decay can shed light on the nature of the neutrino
 - Neutrinos are Majorana
 - that B-L is not a conserved symmetry
 - If found can find the neutrino mass scale
- EXO-200 has been operating for almost 2 years and discovered $2\nu\beta\beta$ decay in Xe-136 and set a limit on $0\nu\beta\beta$ decay that is in tension with the Ge result
 - First $T_{1/2}^{2\nu\beta\beta}$ (2.11 ± 0.04 stat ± 0.21 sys)·10²¹ yr [PRL 107 (2011) 212501]
 - First $T_{1/2}^{0\nu\beta\beta} > 1.6 \cdot 10^{25}$ yr [PRL 109 (2012) 032505]
 - Updated $T_{1/2}^{2\nu\beta\beta}$ (2.23 ± 0.017 stat ± 0.22 sys)·10²¹
- New results this year with improved pattern recognition, reduced background, double the statistics...
- Designing nEXO

University of Alabama, Tuscaloosa AL, USA - D. Auty, M. Hughes, A. Piepke, K. Pushkin, M. Volk

University of Bern, Switzerland - M. Auger, S. Delaquis, D. Franco, G. Giroux, R. Gornea, T. Tolba, J-L. Vuilleumier, M. Weber

California Institute of Technology, Pasadena CA, USA - P. Vogel

Carleton University, Ottawa ON, Canada - A. Coppens, M. Dunford, K. Graham, C. Hägemann, C. Hargrove, F. Leonard, C. Oullet, E. Rollin, D. Sinclair, V. Strickland

Colorado State University, Fort Collins CO, USA - S. Alton, C. Benitez-Medina, C. Chambers, A. Craycraft, S. Cook, W. Fairbank, Jr., K. Hall, N. Kaufold, T. Walton

Drexel University, Philadelphia PA, USA - M.J. Dolinski, E. Smith

University of Illinois, Urbana-Champaign IL, USA - D. Beck, J. Walton, M. Tarka, L. Yang

IHEP Beijing, People's Republic of China - G. Cao, X. Jiang, L. Wen, Y. Zhao

Indiana University, Bloomington IN, USA - J. Albert, S. Daugherty, T. Johnson, L.J. Kaufman

University of California, Irvine, Irvine CA, USA - M. Moe

ITEP Moscow, Russia - D. Akimov, I. Alexandrov, V. Belov, A. Burenkov, M. Danilov, A. Dolgolenko, A. Karelin, A. Kovalenko, A. Kuchenkov, V. Stekhanov, O. Zeldovich

Laurentian University, Sudbury ON, Canada - E. Beauchamp, D. Chauhan, B. Cleveland, J. Farine, B. Mong, U. Wichoski

University of Maryland, College Park MD, USA - C. Davis, A. Dobi, C. Hall, S. Slutsky, Y-R. Yen

University of Massachusetts, Amherst MA, USA - T. Daniels, S. Johnston, K. Kumar, M. Lodato, C. Mackeen, K. Malone, A. Pocar, J.D. Wright

University of Seoul, South Korea - D. Leonard

SLAC National Accelerator Laboratory, Menlo Park CA, USA - M. Breidenbach, R. Conley, K. Fouts, R. Herbst, S. Herrin, J. Hodgson, A. Johnson, R. MacLellan, A. Odian, C.Y. Prescott, P.C. Rowson, J.J. Russell, K. Skarpaas, M. Swift, A. Waite, M. Wittgen, J. Wodin

Stanford University, Stanford CA, USA - P.S. Barbeau, J. Bonatt, T. Brunner, J. Chaves, J. Davis, R. DeVoe, D. Fudenberg, G. Gratta, S.Kravitz, M. Montero-Díez, D. Moore, I. Ostrovskiy, K. O' Sullivan, A. Rivas, A. Sabourov, D. Tosi, K. Twelker

Technical University of Munich, Garching, Germany - W. Feldmeier, P. Fierlinger, M. Marino

Our knowledge of the v mass pattern

we know

- Neutrinos have mass
- Their masses are not the same
- Some of the mixing and parameters of the flavour states

We don't know

- The absolute masses of the eigen states
- Whether the neutrino is Dirac or Majorana
- Mass hierarchy
- CP violation phase

What do we know about neutrino mass assuming three flavors?

From experiments using solar v and reactor \overline{v} : $\Delta m_{21}^2 = \Delta m_{sol}^2 = (7.58^{+0.22}_{-0.26}) \cdot 10^{-5} \text{ eV}^2$ $\sin^2(\theta_{12}) = \sin^2(\theta_{sol}) = 0.306^{+0.018}_{-0.015}$

From experiments using atmospheric and accelerator v: $\Delta m_{32}^2 = \Delta m_{atm}^2 = \pm (2.35_{-0.09}^{+0.12}) \cdot 10^{-3} \text{ eV}^2$ $\sin^2(\theta_{23}) = \sin^2(\theta_{atm}) > 0.42_{-0.03}^{-0.08}$

From experiments using reactor \overline{v} : $\sin^2(\theta_{13}) = 0.0251 \pm 0.0034$

J.Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012)

David Auty 48th Rencontres de Morind

EXO-200 TPC (half of it)

Teflon Reflectors (increase light collection)

APD plane and wire planes (38 U triplet wire 38 V triplet wire crossed at 60° 234 large area APDs in groups of 7)

Central HV plane (photo-etched phosphor bronze Drift field 376 Vcm⁻¹) Acrylic supports

and field shaping rings

Kapton flex cables (spring connections eliminate solder joints and glue)

EXO-200 LAAPD specs

- Mass ~ 0.5 g/LAAPD
- Low radioactivity construction (used bare, no window, no ceramic, EXOsupplied chemicals & metals)^a
- QE > 1 at 175 nm (NIST)
- Gain set at 100-150
- V ~ 1500V
- $\Delta V < \pm 0.5 V$
- $\Delta T < \pm 1 K$ APD is the driver for temperature stability
- Leakage current cold < 1μ A
- Capacitance ~ 200 pF at 1400 V
- ϕ 16 mm active area per LAAPD
- ^a D. S. Leonard, et al., Nucl. Instr. and Meth. A 591 (2008) 490-509

Neilson, R. et al., NIM A 608, 1 (2009)

Correcting for light response

EXO-200 light response (Averaged over $\boldsymbol{\varphi})$

Use full absorption peak of 2615 keV gamma from 208Tl to map light response in TPC

Linearly interpolate between 1352 voxels

Wire Gains

• gains of wire channels measured with charge calibrations

• This is further corrected using the pair production peak (1593 keV) from ²³²Th 2615 keV gamma depositions.

• Have also individually measured the electronic transfer function of each channel, which are used to reconstruction the charge signals

• With all this, and the excellent purity, the charge resolution improved to 3.4% from 4.5% at 2615 keV

Systematic Error Breakdown

 Bars show the expected 90% confidence limit if we assume perfect knowledge of parameters that contribute to systematic errors

EXO-200 material screening

- Stringent requirements on K/Th/U concentrations on materials inside cryostat
- Large-scale materials testing, published in *Nucl. Instr. and Meth. A 591* (2008) 490–509
- In particular:

Component	K 10 ⁻⁹ g/g	Th 10 ⁻¹² g/g	U 10 ⁻¹² g/g	²¹⁰ Po Bq/kg
3M Novec HFE-7000, 1- methoxyheptafluor opropane	<1.08	<7.3	<6.2	
Lead shielding	<7	<1	<1	17-20
Copper	<55	<2.4	<2.9	
Acrylic	<2.3	<14	<24	
TPC grid wires	<90	47 +/- 2	320 +/- 2	

Xenon Purity

• Continuously recalculate Xe through SAES high temperature purifiers using a custom designed magnetic piston pump. [Neilson et al. (2011) arXiv:1104.5041v1].

• Average electron lifetime for $0\nu\beta\beta$ data set was ~ 3 ms with maximum drift time of 110 us.

- Detector measures E, x, y, z for each site
- Use scattering formula

$$\phi = \arccos\left[1 - m_e c^2 \cdot \left(\frac{1}{E_\gamma - E_1} - \frac{1}{E_1}\right)\right]$$

 From each site a cone is drawn and adding up these cones produces the image to the right Can point to source using a Compton telescope technique

David Auty 48th Rencontres de Morind

Rn Content in Xenon

The Bi-214 is consistent with measurement from alpha-spectroscopy, and the expected Rn background.

David Auty 48th Rencontres de Morind

- Measured $2\nu\beta\beta$ rate does not change with choice of fiducial volume
- Rates of backgrounds gammas are less deeper inside the detector

Sensitivity

Given our estimated background, we expect to quote a 90% CL upper limit on $T_{1/2}$ of 1.6 x 10²⁵ years or better, 6.5% of the time. We would quote a 90% CL upper limit of 7 x 10²⁴ years or better, 50% of the time.

Cuts

- Events must have a charge cluster and a scintillation cluster
- Not occur 1µs before a veto panel trigger or 25ms after
- Not occur within 1 second of any other event
- Not occur 1µs before or 60s after a TPC event tagged as a muon

Fiducial Volume

Circular & Hexagonal volumes

Backup: Spatial Distribution

Events within ± 1 σ
Events within ± (1-2)σ

David Auty 48th Rencontres de Morind

Cosmic-ray veto system impact

Spectral Shape Agreement – ²²⁸Th

- Fraction of single site events agrees with simulation to within 8.5%
- Absolute source activity agrees to within 9.4%

Spectral Shape Agreement – ⁶⁰Co

- Fraction of single site events agrees with simulation to within 8.5%
- Absolute source activity agrees to within 9.4%