

Single W and Z production, and W/Z+Jets at the Tevatron

Hang Yin

Fermilab

Moriond Electroweak Conference March 8th, 2013

Introductions

- ✓ Precision test on Standard Model (SM)
 - Parton distribution functions, initial state radiation, nonperturbative form factor
 - Background for many
 Searches, new physics
- Complementary to LHC
 Tevatron: Valence quark annihilation
 LHC: sea quark, and gluon contributions

Weak mixing angle

✓ Fundamental parameter
 in the electroweak theory
 ✓ LEP A_{FB}^b and SLD A_{LR}:
 off by 3σ in opposite direction

Weak mixing angle

✓ In Collins-Soper frame, Z boson differential cross section:

$$\frac{dN}{d\Omega} \propto (1 + \cos^2 \vartheta) + A_0 \frac{1}{2} (1 - 3\cos^2 \vartheta) + A_1 \sin 2\vartheta \cos \varphi + A_2 \frac{1}{2} \sin^2 \vartheta \cos 2\varphi + A_2 \frac{1}{2} \sin^2 \vartheta \cos 2\varphi + A_3 \sin \vartheta \cos \varphi + A_5 \sin^2 \vartheta \sin 2\varphi + A_5 \sin^2 \vartheta \sin 2\varphi + A_6 \sin 2\vartheta \sin \varphi + A_7 \sin \vartheta \sin \varphi$$

In pQCD, A_5 , A_6 , A_7 near 0 A_1 , A_3 are small A_4 sensitive to sin² Θ_W

With 2.1 fb⁻¹ data of $Z \rightarrow$ ee events

Measure A₄ in different Z p_T bins, use the average value to extract weak mixing angle. (PRL 106, 241801 (2011))

Hang Yin, Moriond EW Conference

03/08/2013

Constraint on W mass

✓ Motivation:

- Test the vector boson production formalism
- Reduce theory uncertainty of the precision W mass measurement
- Reduce uncertainties on searches with backgrounds from high p_T boson
- \checkmark Z boson p_T: Comes from initial QCD radiation

03/08/2013

PRD 86,052010 (2012)

- Low p_T region: dominated by soft and collinear gluons emission, limited standard perturbative calculation
 - QCD resummation methods
- ✓ High p_T region: dominated by a single parton emission

Fixed-order perturbative calculations

✓ With 2.1 fb⁻¹ data of Z→ee events

PRD 86,052010 (2012)

W/Z+jets productions

✓ Motivations:

- Important background for new physics search
- Stringent test of perturbative QCD
- Theoretical predictions suffer from large uncertainties
- ➢Constrain the quark PDF (W+c)

✓ Most of measurement are using CDF/DZero full data-set

Submitted to PRD. arXiv: 1302.6508

- \checkmark Theoretical uncertainty is the dominated uncertainty
- ✓ Results:
 - Compared with plenty of
 - MC predictions
 - Interesting comparisons for plenty of variables
 - Smaller/equivalent uncertainties
 - to the best predictions

With 3.7 fb⁻¹ data

Jet Rapidity

PLB 718,1314 (2013)

✓ Previous measurements: > <u>CDF</u>: <u>PRL 104, 131801 (2010)</u> Measured: 2.74 ± 0.27 (stat.) ± 0.42 (syst.) pb Prediction: 1.22 ± 0.14 (syst.) pb

✓ **Dzero** results with 6. 1 fb⁻¹ data

Measured: $\sigma(W + b) \cdot \mathcal{B}(W \to \ell v)$ = 1.05 ± 0.03 (stat.) ± 0.12 (syst.) pb. Prediction: $\sigma(W + b) \cdot \mathcal{B}(W \to \ell v) = 1.34^{+0.41}_{-0.34}$ (syst.) pb.

First observation PRL 110, 071801 (2013) \checkmark At Lowest order: quark-gluon fusion (gq->Wc), where q = d, s, **b** quark

✓ ~20% from *gd->Wc*: small quark-mixing matrix element. Same for *gb->Wc* Observed

\checkmark Results:

- ➢ Cross section: 13.6^{+3.4}_{−3.1} pb
- > NLO prediction: 11.4 ± 1.3 pb
- \succ Significance: 5.7 σ (hypothesis of no signal interpreted)

➤ Given
$$\sigma_{W_c}^{theory} = 9.8(\pm 1.1) |V_{CS}|^2 + 2.1(\pm 0.2) pb$$

|V_{cs}| = 1.08 ± 0.16

 \blacktriangleright Restricting the range to [0,1],

extracted $|V_{cs}| > 0.71$ at 95% CL

03/08/2013

Z+jets

- ✓ Jet requirements: R = 0.7, $p_T > 30$ GeV, |y| < 2.1
- ✓ Results:
 - ➤ Z+≥1jets, Z+≥2 jets, Z+≥Njets, as function of plenty of variables
 - Compare results with next-to-leading order(NLO) pQCD predictions including non-perturbative corrections

03/08/2013

Z+b/Z+jet

Submitted to PRD. arXiv: 1301.2233

✓ Select events with Z->ee, $\mu\mu$ + b jet

- ✓ Results:
 - > Ratio: $0.0202 \pm 0.0014 \, (\text{stat.}) \pm 0.0018 \, (\text{syst.})$
 - \blacktriangleright NLO prediction: $0.0206^{+0.0022}_{-0.0013}$

To compare with NLO prediction with MCFM:

	Data	$Q^2 = m_Z^2 + p_{T,Z}^2$	$Q^2 = < p_{T,jet}^2 >$
$rac{\sigma_{Z,bjet}}{\sigma_Z}$	0.261 ± 0.023 (stat.) ± 0.029 (syst.) %	0.23%	0.29%
$rac{\sigma_{Z,bjet}}{\sigma_{Z,jet}}$	2.08 ± 0.18 (stat.) ± 0.27 (syst.) %	1.8%	2.2%

03/08/2013

- ✓ At the Tevatron, precise measurement of W/Z boson production provides tests on the Standard Model
- ✓ Precise measurement of V+jets provides tests on the pQCD formalism

 Many W, Z properties measurements with full data-set are ongoing

BACKUP

03/08/2013

03/08/2013

CDF and DØ detector

Collins-Soper frame y X e^{-} θ^* \mathcal{Z} P_{2} \mathbf{P}_1

Weak mixing angle

03/08/2013

Weak mixing angle

Soft gluon resummation

 \checkmark The differential cross section:

$$\frac{d^2\sigma}{dp_T^2} \sim \frac{\alpha_W \alpha_S}{p_T^2} \ln\left(\frac{Q^2}{p_T^2}\right) \left[v_1 + v_2 \alpha_S \ln^2\left(\frac{Q^2}{p_T^2}\right) + v_3 \alpha_S^2 \ln^4\left(\frac{Q^2}{p_T^2}\right) + \cdots \right]$$

✓ Collins, Soper, Sterman formalism: re-organize the v_i terms in b-space

$$\frac{d^2\sigma}{dp_T^2} \sim \int_0^\infty d^2 b e^{i\overline{p_T} \cdot \vec{b}} W(b,Q) + Y(b,Q)$$

 \checkmark W(b, Q): sum to all orders the terms that are at least as singular as $1/p_T^2$

✓ Y(b, Q): difference between the fixed-order perturbative result and part of the series that is as singular as $1/p_T^2$

$$W(b,Q) = W(b_*,Q)e^{-S_{NP}(b,Q)}, \text{ with } b_* = \frac{b}{\sqrt{1 + (b/b_{max})^2}}$$

- ✓ b_∗ marks the region where one crosses from a (reasonable) well defined perturbative region into the non-perturbative region
- \checkmark W(b*, Q): perturbative part and can be calculated by perturbative expansions
- \checkmark S_{NP}: non-perturbative Sudakov form factor (Ladinsky-Yuan form):

$$S_{NP}(b,Q) = g_1 b^2 + g_2 b^2 \ln\left(\frac{Q^2}{2Q_0^2}\right) + g_1 g_3 b \ln(100 x_i x_j)$$

Hang Yin, Moriond EW
Conference 23

03/08/2013

Generator level correction: make flat ratio between data and MC.

03/08/2013

W+b

- ✓ Electron : $p_T > 20$ GeV, $|\eta| < 1.1$ && 1.5< $|\eta| < 2.5$, shower shape cuts, isolation cuts, Eoverp cut
- ✓ Muon : $p_T > 20$ GeV, $|\eta| < 1.7$, isolated in both tracker and calorimeter, reject cosmic rays
- ✓ Jet: $|\eta| < 1.1$, $p_T > 20$ GeV, in a cone of 0.5
- ✓ MET > 25 GeV
- ✓ Largest uncertainty from luminosity, jet energy resolution, jet modeling, detector effects
 - ➢ 6.1%, 2.5%, 3%, 4%
- ✓ MCFM v6.1, with central scale of M_w +2 m_b , mb = 4.7 GeV
 - Include renormalization and factorization scales by a factor of two in each direction
 - \blacktriangleright m_b 4.2 5 GeV, and PDF sets
 - CDF prediction: J. Campbell, F. Febres Cordero, L. Reina, private communication(2009)

03/08/2013

W+c

- > (NLO-LO)/LO ~ 50%, at the Tevatron, 10-20% uncertainties
- Charm quark is identified through the semileptonic decay of the charm hadron into an electron or muon (soft leptons)
 - Electron/muon within the jet
 - Charge conservation allow only: *W*⁺+anti-c, *W*⁻+c
 - OS and SS events: based on the charge of lepton from W, and the charge of soft-lepton from charm

$$\sigma_{Wc} = \frac{N_{tot}^{OS-SS} - N_{bkg}^{OS-SS}}{SAL}$$

- A : acceptance
- L : luminosity
- S : dilution matrix

Hang Yin, Moriond EW Conference

$$S = \frac{N_{Wc}^{OS} - N_{Wc}^{SS}}{N_{Wc}^{OS} + N_{Wc}^{SS}}$$

03/08/2013

26

W+c

 \checkmark A and S are derived from a MC

- \geq Require p_Tc > 20 GeV, $|\eta| < 1.5$
- W+ccbar not considered in the acceptance: cancel out in the same-sign subtraction, owing to the largely chargeasymmetry detector response
- ✓ Selection cuts:
 - Lepton pt > 20 GeV, |η|< 1.1, MET > 25 GeV, one jet pt > 20 GeV, |η|< 2.0, Mt > 20 GeV
 - ➤ Soft lepton:
 - Muon: matching trajectories of trks of the jet, pT > 3 GeV, $\Delta R < 0.6$
 - Electron: $pt > 2 \text{ GeV}, \Delta R < 0.4$

W+c

✓ Signal: LO+PS, HQ decay from **EVTGEN** ✓ Bkgs: \succ Y/Z \rightarrow µµ: remove mass between 8-11, 70-110 GeV \triangleright Z \rightarrow ee: remove mass > 45 GeV QCD: azimuthal angular (MET, jet) <0.3, reject ➢ W+jets: pre-tag - signal,bkgs Times mis-tag prob Mis-tag probalility: using a data Sample of pions, kaons, and protons from Λ^0 and D^{*+} tagged D⁰ decays.

Percentage

Source	SLT_{μ}	SLT _e
SLT uncertainties	±9.2	±16.6
QCD multijet estimate	±6.3	±9.9
Initial and final state radiation	±6.0	±6.0
Background cross sections	±5.7	±4.7
c quark hadronization	±4.6	±4.6
PDFs	±3.6	±3.6
W-lepton ID	±2.2	±2.2
Jet energy calibration	±2.0	±2.0
Factorization, renormalization scales	±1.3	±1.3
Total	±15.4	±21.8
Luminosity	±7.9	±8.3

03/08/2013

✓ CTEQ6.1M,
$$Q^2 = M_Z^2 + p_T^2(Z)$$

- ✓ Jet energy: 5% in low jet pt region, 12% at high jet pt region
- ✓ Background: 1%-5%

8,8

Z+b/Z+jets

- ✓ Electron channel: $p_T > 15$ GeV, $|\eta| < 1.1$ && 1.5< $|\eta| < 2.5$
- ✓ Muon channel: $p_T > 10$ GeV, $|\eta| < 2$
- ✓ Jet: p_T > 20 && |η| < 2.5</p>
- ✓ D_{MJL} = 0.5*(M_{SV}/5 GeV − ln(JLIP)/20)
 - MSV: the invariant mass of the charged particles associated with the secondary vertex
 - JLIP: Jet Lifetime Probability, is the probability that tracks associated with the jet originate from the ppbar interaction vertex
- ✓ Largest uncertainties from b jet energy calibration, (jet energy resolution, jet energy scale)

Conference

✓ Extraction of b fraction:

Fit negative tagged jets: negative values for the decay legth significance and/or Impact parameter, caused by detector resolution effects

Different between data and MC as uncer.
 Hang Yin, Moriond EW

03/08/2013

Z+b

- ✓ Electron channel: p_T > 20 GeV, 66 < M_{ee} < 116 GeV/c², one electron in central |η| < 1, another electron can be 1.2-2.8, ANN
- ✓ Muon channel: ANN cuts
- ✓ b jet: secondary vertex, named TIGHT SECVTX algorithm
- ✓ b jet fraction:
 - a binned maximum likelihood fit, based on the invariant mass of all charged tracks reconstructed at the secondary vertex.
- ✓ NLO: MCFM generator
- ✓ Largest uncertainty from Light jet template

W/Z differential cross section

✓ Z:
$$\frac{d\sigma}{d(\cos\theta)} = A(1+\cos^2\theta) + B\cos\theta$$

 $\checkmark W: \quad \frac{d\sigma}{d(p_T^W)^2 dy d\cos\theta d\phi} = \frac{3}{16\pi} \frac{d\sigma^u}{d(p_T^W)^2 dy} [(1 + \cos^2 \theta) + \frac{1}{2}A_0(1 - 3\cos^2 \theta) + A_1\sin 2\theta\cos\phi + \frac{1}{2}A_2\sin^2 \theta\cos 2\phi + A_3\sin\theta\cos\phi + A_4\cos\theta + A_5\sin^2 \theta\sin 2\phi + A_6\sin 2\theta\sin\phi + A_7\sin\theta\sin\phi]$ (1)

03/08/2013