Recent results from T2K

Motoyasu Ikeda (Kyoto University) for T2K collaboration

March. 5, 2013
Rencontres de Moriond
Content

• Introduction of T2K
• Results
 – ν_μ disappearance: θ_{23} & Δm_{32}
 \textbf{(New results in this winter)}
 – ν_e appearance: θ_{13} (shown in ICHEP 2012)
• Summary

T2K collaboration
~500 people from 11 countries
Introduction: Neutrino mixing

3 flavor neutrino mixing:

Flavor (e,μ,τ)
Eigenstate

\[
\begin{align*}
V_e & = U_{PMNS} \times V_1 \\
V_\mu & = U_{PMNS} \times V_2 \\
V_\tau & = U_{PMNS} \times V_3
\end{align*}
\]

Mass (m_1,m_2,m_3)
Eigenstate

\[
U_{PMNS} = \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13} e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13} e^{i\delta} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

Current status

Solar and reactor (KamLAND)
\[\theta_{12} = 33.6^\circ \pm 1.0^\circ\]

Atmospheric, accelerator
\[\theta_{23} = 45^\circ \pm 6^\circ \quad (90\% CL)\]

Accelerator, reactor (DayaBay,DoubleChooz,RENO)
\[\theta_{13} = 9.1^\circ \pm 0.6^\circ\]

Remaining questions:

- Is \(\theta_{23} = \pi/4\)?
- CP phase (\(\delta\))?
- Mass hierarchy
 \(m_1 < m_2 < m_3\)? \(m_3 < m_1 < m_2\)?
Introduction: 2 modes in T2K

ν\(_\mu\) disappearance

\[\text{Prob}(\nu_\mu \rightarrow \nu_\mu) \approx 1 - \sin^2 2\theta_{23} \sin(1.27 \Delta m_{32}^2 L/E) \]

Precise measurement of \(\theta_{23}, \Delta m_{32}^2\)

ν\(_e\) appearance

\[\text{Prob}(\nu_\mu \rightarrow \nu_e) \approx \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin(1.27 \Delta m_{32}^2 L/E) + \text{CPV term} + \text{Matter term} + \ldots \]

Evidence of ν\(_e\) appearance in 2012!

To answer the remaining questions, precise measurement of all parameters are necessary.
Results Shown Today

• Data: from Jan 2010 to July 2012

3.01 × 10^{20} Protons On Target (POT)

~4% of T2K’s target POT (7.8 × 10^{21}POT)
Stable ν beam in whole period.

• Oscillation analysis results

 – Near detector measurement

 – ν_μ disappearance : θ_{23} & Δm_{32}
 (New results in this winter)

 – ν_e appearance: θ_{13} (shown in ICHEP 2012)
Experimental setup of T2K

- Secondary π^+ (and K^+) from 30 GeV protons focused by three E.M. horns
- ν_μ beam (mainly $\pi^+ \rightarrow \mu^+ + \nu_\mu$)
- Off axis neutrino beam (2.5°)
 - Narrow band @ osc. max
 - Reduce BG from high energy
 - ν direction stability < 1 mrad

$\Delta m^2_{23} = 2.4 \times 10^{-3} eV^2$
$\theta_{23} = 1/4\pi$, $L=295 km$
$\sin^2 2\theta_{13} = 0.1$
ND280

Off axis neutrino detector

280m from target
ND280

Off axis neutrino detector

Signal:
Charged Current Quasi Elastic (CCQE) interaction

\[\nu \rightarrow e \text{ or } \mu \]

Fine Grained Detector (FGD) with 1cm square plastic scintillators (1.6ton fiducial mass).

Tracker: FGD & TPC

TPC provides PID \((de/dx, \text{charge})\) and Momentum of each track.
ND280

Off axis neutrino detector

Event Display of CC like event
CCQE selection (one μ track selection)

- Good μ^- candidate in FV.
- Upstream TPC veto
- muon ID by TPC
- 1 FGD-TPC track
- No decay-e in FGD

For CCQE selection
40% eff. w/ 72% purity
Far Detector: Super-Kamiokande

20inch (~50cm) PMT

Fiducial volume is 2m from ID wall

= 22.5 kton
Particle ID technique

\[\nu_e \text{ CC simulation} \quad \nu_e \]

\[\nu_\mu \text{ CC simulation} \quad \nu_\mu \]

Miss-PID probability \(\sim 1\% \)!
ν_μ disappearance

ν_μ candidate

58 events observed
MC: 57.8 (osc.)
196.2 (no osc.)

E_ν can be reconstructed by P_μ & θ_μ

Signal (CCQE): 1 ring μ-like

ν_μ can be reconstructed by P_μ & θ_μ

CC1π

ν_μ candidate

ν_μ CC QE

ν_μ CC non-QE

ν_e CC

NC

(MC w/ 2-flavor osc.)

$(\sin^2 2\theta_{23}, \Delta m_{23}^2) = (1.0, 2.4 \times 10^{-3} \text{eV}^2)$

Fiducial Volume

16$^\text{O}$

(Cherenkov threshold)
Method of ν oscillation analysis

ν Flux prediction
With external hadron production data especially from NA61@CERN

Neutrino Cross section
Model (NEUT), uncertainties developed with fits to external data

<table>
<thead>
<tr>
<th>ND280 Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momentum and angle of ν_μ CCQE and CCnonQE</td>
</tr>
</tbody>
</table>

- Fit the ND280 Data to refine flux and ν-int. model
- Verification with ν_e & π^0 data @ND280

SK prediction
Tuned MC based on ND280 measurement

Comparison

SK Measurement
ν_μ disappearance: # of events and energy spectrum
Neutrino oscillation parameter fit

2 different methods

• Maximum likelihood method with reconstructed E_ν

$$\mathcal{L}(\vec{\sigma}, \vec{f}) = \mathcal{L}_{\text{norm}}(\vec{\sigma}, \vec{f}) \times \mathcal{L}_{\text{shape}}(\vec{\sigma}, \vec{f}) \times \mathcal{L}_{\text{syst}}(\vec{f})$$

 – Where σ and f are ν oscillation parameters and systematic error parameters.

 – Vacuum oscillation is used (matter effect is small)

• Likelihood-ratio method with reconstructed E_ν

$$\chi^2 = 2 \sum_{E} \left(N_{SK}^{\text{data}} \ln \frac{N_{SK}^{\text{data}}}{N_{SK}^{\text{exp}}} + (N_{SK}^{\text{exp}} - N_{SK}^{\text{data}}) \right) + (\vec{f} - \vec{f}_0)^T C^{-1} (\vec{f} - \vec{f}_0)$$

 – N_{SK} is number of event in SK for each energy bin

 – f_0 is default systematic parameters, and C is covariance.

 – Matter effect is taken into account.
ν osc. analysis (ν_μ disappearance)

Preliminary

Best fit spectrum
No osci. spectrum
Data (Run1-3)

World best precision of θ_{23}!
Effect of systematics

True oscillation parameter \((\sin^2 2\theta_{23}, \Delta m_{32}^2) = (1.0, 2.4 \times 10^{-3} \text{eV}^2)\)

<table>
<thead>
<tr>
<th>Error on # of event@SK</th>
<th>w/ ND280 Meas.</th>
<th>w/o ND280 Meas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux (\times \nu \times\text{sec.})</td>
<td>21.7%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Un-corr (\nu \times\text{sec})</td>
<td>6.2%</td>
<td></td>
</tr>
<tr>
<td>SK detector</td>
<td>10.5%</td>
<td></td>
</tr>
<tr>
<td>Final State Int.</td>
<td>3.5%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25.3%</td>
<td>13.5%</td>
</tr>
</tbody>
</table>

Error is still dominated by stat. error.
v_e appearance
νₑ appearance

νₑ candidate

Signal (CCQE): 1 ring e-like

Fiducial Volume

νₑ

16O

p

(main below Cherenkov threshold)

Main NC BG

Number of Events

- 11 events
- p-value 0.08%
- 3.2 σ

Reconstructed Eν [MeV]
ν osc. analysis (ν_e)

<table>
<thead>
<tr>
<th>Error on # of event at SK (%)</th>
<th>w/ ND280</th>
<th>w/o ND280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux \times ν cross section</td>
<td>24.4</td>
<td>5.7</td>
</tr>
<tr>
<td>Un-correlated ν cross section</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>SK +FSI+SI</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25.9</td>
<td>10.3</td>
</tr>
</tbody>
</table>

Best fit: $\sin^22\theta_{13} = 0.094^{+0.053}_{-0.040} (0.116^{+0.063}_{-0.049})$ for N.H. (I.H.)

Assuming Normal H.

Assuming Inverted H.
Data taking status & prospect

Currently beam power:

230kW
(~150kW in last year)

Very stable operation.
Almost double POT since Run3 (as of March)

Expected P.O.T.
This year : 8×10^{20}
(5σ for v_e appearance)
2014 : 12×10^{20}
2015 : 18×10^{20}
Goal : 78×10^{20}

Please look forward to more results from T2K!!
Summary

• T2K results are presented with 3.01×10^{20} POT (~4% of ultimate POT)

• ν_μ disappearance: World record on θ_{23}!

 $(\sin^2 2\theta_{23}, \Delta m_{23}^2) = (1.00_{-0.068}^{+0.068}, 2.45 \pm 0.30 \times 10^{-3} \text{ eV}^2)$ 90% C.L.

• ν_e appearance: 3.2σ significance. Evidence!!

 $\sin^2 2\theta_{13} = 0.094^{+0.053}_{-0.040} (0.116^{+0.063}_{-0.049})$ for N.H. (I.H)

Prospect

• Keep stable data taking (current beam power ~230kW)

• 8×10^{20} POT by this summer (\rightarrow 5σ for ν_e app.)

• Aim to accumulate 12×10^{20} POT (2014) and 18×10^{20} POT (2015)
back up
Physics
CPV measurement

- CPV term in \(\text{Prob}(\nu_{\mu} \to \nu_e) \propto \sin \theta_{12} \cdot \sin \theta_{23} \cdot \sin \theta_{13} \cdot \sin \delta \)

Now we know \(\theta_{13} \) is not 0!

This has opened up the possibility to measure CPV in lepton sector

Note: The largest uncertainty is on \(\theta_{23} \)

Both \(\nu_e \) appearance and \(\nu_\mu \) disappearance are very important to for future CPV measurement
We want to understand the underlying physics to explain the structure of lepton mixing with precise measurements of parameters.
\(\nu_\mu \rightarrow \nu_e \) appearance

\[
P(\nu_\mu \rightarrow \nu_e) = 4C_{13}^2 S_{13}^2 S_{23}^2 \sin^2 \frac{\Delta m_{31}^2 L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^2} \frac{\Delta m_{21}^2 L}{4E} \right)
\]

\[
+8C_{13}^2 S_{12} S_{13} S_{23} (C_{12} C_{23} \cos \delta - S_{12} S_{13} S_{23}) \cos \frac{\Delta m_{32}^2 L}{4E} \sin \frac{\Delta m_{21}^2 L}{4E} \sin \frac{\Delta m_{31}^2 L}{4E}
\]

\[
-8C_{13}^2 C_{12} C_{23} S_{12} S_{13} S_{23} \sin \delta \sin \frac{\Delta m_{32}^2 L}{4E} \sin \frac{\Delta m_{31}^2 L}{4E} \sin \frac{\Delta m_{21}^2 L}{4E}
\]

\[
+4S_{12}^2 C_{13}^2 \left\{ C_{12} C_{23}^2 + S_{12} S_{23}^2 S_{13}^2 - 2C_{12} C_{23} S_{12} S_{23} S_{13} \cos \delta \right\} \sin^2 \frac{\Delta m_{21}^2 L}{4E}
\]

\[
-8C_{13}^2 S_{13}^2 S_{23}^2 \cos \frac{\Delta m_{32}^2 L}{4E} \sin \frac{\Delta m_{31}^2 L}{4E} \frac{aL}{4E} \left(1 - 2S_{13}^2 \right)
\]

Matter effect (small in T2K)

\(a \rightarrow -a, \delta \rightarrow -\delta\) for \(P(\nu_\mu \rightarrow \nu_e)\)

\(L=295\text{km}, \langle E_\nu \rangle \sim 0.6\text{GeV}\)

\[
a = 7.56 \times 10^{-5} \left[\frac{eV^2}{g/cm^3} \right] \left(\frac{E}{\text{GeV}} \right)
\]

\(\sin^2 2\theta_{13} = 0.1, \delta = \pi/4\)
Mass hierarchy

(normal)

(inverted)
Goal of T2K

First Goal
- Discovery of $\nu_\mu \rightarrow \nu_e$ (θ_{13} measurement)
 Achieved in 2012!

Ultimate Goal
- Precision measurement of ν_μ disappearance
- Measurement (/indication/hint) of δ_{CP} and the mass hierarchy.
Beam line and monitors
Run1-2 (2010-2011): 1.43×10^{20} Protons on target (p.o.t.)

Run3 (2012): 1.58×10^{20} p.o.t.

- Confirmed that the beam quality is unchanged after the earthquake
- Achieved stable 200kW beam power operation.

Total number of protons is 3.01×10^{20} p.o.t for this analysis
J-PARC neutrino beamline components

- Muon Monitor
- Horn
- Beam monitors
- Super-Conducting Magnets

Near Detector (at 280m from target)

Beam Dump
Decay Volume

νμ

π+

30GeV
MR

Target
Monitoring ν beam direction

Muon monitor
- consists of 49 Si sensors
- can check Spil by spil stability.
$$10^5 - 10^7 \mu/cm^2/bunch$$

INGRID
- consists of 16 modules of scintillator + Iron trackers.
- can check actual ν beam direction day by day.

For off axis beam \rightarrow Beam direction monitors are very important
Secondary beam line monitor: Muon monitor (MUMON)

Detect decay μ from π

→ Indirect measurement of ν beam direction spill-by-spill.

Ion chamber array (7×7ch)

Silicon pin photo diode array (7×7ch)

Spill-by-spill μ beam profile by fitting with Gaussian.

Signal @ 1ch

Integrate $\times 49$ ch

2D profile

1D slice profile

ADC count

Integrate

x[cm]

1000 2000 3000 4000 5000

Time [ns]

-600 -400 -200 0 200 400

-80 -60 -40 -20 0 20 40 60

$\times 80$
1 mrad change makes the peak of ν spectrum by 2-3% (=error on Δm²)

INGRID also shows good stability of neutrino beam
~280m from target

INGRID
On axis neutrino detector
INGRID event selection

Select neutrino event in FV
- Coincident hits in X-Y plane & Timing cut → Reject accidental hits
- Reconstruct one track.
- Select vertex inside fiducial volume → Veto sand, muon, cosmic

Event timing

![Event timing graph showing # of events vs time from trigger in nsec]
Event display of INGRID

Neutrino event

Beam profile (~1 month data)
Neutrino event rate is stable within 1% @ INGRID

Beam center position by INGRID

± 1 mrad

X profile center

Y profile center

(a point ~ one month)

~ 280 m from target
Neutrino flux prediction

NA61/SHINE (@CERN) measured hadron production in \((p, \theta)\) using 30GeV protons and graphite target *

* \(\pi\) outside NA61 acceptance and production modeled with FLUKA

horn focusing, decay is simulated by GEANT3

\(\nu_\mu\) at SK

\(\nu_e\) of \(\mu\) decay is due to \(\pi\) decay → can accurately be predicted by NA61 \(\pi\) measurement

Graphs showing flux vs. energy for different categories of particles. The graphs are labeled for \(\nu_\mu\) at SK and \(\nu_e\) at SK.
CERN NA61/SHINE measurement

Measure hadron (π, K) yield distribution in 30 GeV p + C inelastic interaction
- thin target 4%λ (2cm)

π+ production: Two analysis for different momentum region

NA61/SHINE setup

Large acceptance spectrometer + TOF

detector performance
σ(p)/p^2 ≈ 2 × 10^{-3}, 7 × 10^{-3}, 3 × 10^{-2} (GeV/c)^{-1},
σ(dE/dx)/(dE/dx) ≈ 0.04
σ(TOF-F) ≈ 115 ps

for p > 5, p = 2, p = 1 GeV/c
Results of pion production from thin target (2007 data)

N. Abgrall et al., arXiv:1102.0983 [hep-ex]

Differential cross section for π^+ production
in 30GeV $p+C$

Error bars = stat. + syst. in quadrature

Systematic uncertainty was evaluated in each (p, θ) bin
typically 5-10%

The normalization uncertainty is 2.3% on the overall (p, θ)

→ Propagate the systematic uncertainty in each (p, θ) bin into the expected number of events in T2K

→ Input to T2K neutrino beam simulation
Near future operation plan of MR-FX

<table>
<thead>
<tr>
<th>Periods</th>
<th>Expected beam power</th>
<th>Improvements / Cycle time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011. 6-11</td>
<td>shutdown</td>
<td>Ring collimator shields, 7th and 8th RF systems, New injection kicker</td>
</tr>
<tr>
<td>2011. 12 - 2012. 6</td>
<td>100 - 200 kW (RCS 300 kW eq.)</td>
<td>Cycle time 3.2 -> 2.56 Beams loading compensation</td>
</tr>
<tr>
<td>2012. 7 – 9</td>
<td>shutdown</td>
<td>Ring collimator upgrade (0.45 -> 2 kW) 9th RF system</td>
</tr>
<tr>
<td>2012. 10 – 2013. 7</td>
<td>> 200 kW (2012.10~) (RCS 300-400 kW eq.)</td>
<td>Cycle time 2.48 -> 2.4 s Second harmonic cavities</td>
</tr>
<tr>
<td>2013. 8 – 2013. 1</td>
<td>shutdown</td>
<td>Ring collimator upgrade (2 kW -> 3.5 kW) Linac upgrade</td>
</tr>
<tr>
<td>2014. 2 – 2014. 6</td>
<td>> 300 kW (RCS > 600 kW eq.)</td>
<td>Cycle time 2.4 s</td>
</tr>
</tbody>
</table>

Koseki @ HK open meeting
http://indico.ipmu.jp/indico/getFile.py/access?contribId=13&sessionId=3&resId=0&materialId=slides&confId=7
Off-axis Near Detectors (ND280)

In present analysis,

2 fine grained detectors (FGDs)
 - Active target
 - 1.6t fiducial mass

3 time projection chambers (TPCs)
 - PID(by dE/dx), Momentum, Charge

Measure ν flux/spectrum before oscillation

Better than 10% dE/dx resolution

10% momentum resolution @1GeV/c
Constrain by ND280 fit

Cross section param.	Before ND280 Fit	After ND280 Fit
Axial Mass for QE (GeV) | 1.21 ± 0.45 | 1.19 ± 0.19
Axial Mass for Resonance (non QE)(GeV) | 1.16 ± 0.11 | 1.14 ± 0.10
CCQE Norm 0-1.5 GeV | 1.00 ± 0.11 | 0.94 ± 0.09
CC1π Norm 0-2.5 GeV | 1.63 ± 0.43 | 1.67 ± 0.28
NC1π0 Norm. | 1.19 ± 0.43 | 1.22 ± 0.40

Cross section parameters are constrained by ND280 data! They are used for SK prediction.
$p_{\mu,\theta}@\text{ND280}$ Color: MC, Box: Data

CCQEsample

CCnQEsample

μ momentum [MeV/c]

$\cos(\mu\text{ angle})$
Beam ν_e measurement

POD

- Only one shower like track
- Energy threshold 1.5GeV

TPC+FGD+ECAL

- Largest negative track from FGD
- Largest track is e-like (TPC dE/dx, and Ecal shower like)

MC consistsents with data
POD NCπ^0 measurements

- Main BG for nue appearance at SK

Selection
- no μ-like track
- 2 shower like track
- no μ-decay electron
- Forward tracks
- Track distance > 5cm

Data/MC = 0.84 ± 0.16 (stat) ± 0.18(sys)

MC consistent with data
CC Inclusive cross section

\[\langle \sigma_{CC} \rangle_\phi = (6.93 \pm 0.13 \text{(stat)} \pm 0.85 \text{(syst)}) \times 10^{-39} \text{ cm}^2 \text{ nucleons}\]
SK
ν_e signal and background at Super-K

- **Signal:** Single electron event
 - Mainly Charged Current Quasi Elastic (CCQE)
 \[\nu_e + n \rightarrow e^- + p \]

- **Main background:**
 - Intrinsic ν_e (estimated from beam MC)
 - π^0 from Neutral Current interaction (NCπ^0)
 - Overlap of 2γs
 - Missing out on 1γ
 when one of γ has very low energy

Oscillation
Proton is below Cherenkov Threshold
ve appearance

1. Events in the T2K beam timing and fully contained (FC) in ID
2. Fiducial volume cut
3. Single electron cut
 - Number of ring = 1 and e-like event
4. Visible energy > 100 MeV
 - Rejects low energy NC events and electrons from invisible μ, π decays
5. No decay electron
 - To eliminate non-CCQE, miss identified μ event
6. Invariant mass < 105 MeV
 - To eliminate NC π^0 background
7. Reconstructed energy (assuming CCQE) < 1250MeV
ν_μ disappearance

- **Signal:** Single μ event
 - CCQE enriched sample for energy spectrum measurement.
- **Background:**
 - CC non-QE (ex. CC1π, etc.)
- **Selection criteria**
 - T2K beam timing & FCFV
 - Single ring μ-like event
 - less than 2 decay electron (to reduce CC non-QE)
 - Reconstructed μ momentum > 200 MeV/c
Observed ν_e candidate event (No.1)
Observed ν_e candidate event (No.2)

Super-Kamiokande IV
T2K Beam Run 36 Spill 261731
Run 67886 Sub 289 Event 66474118
10-11-21:07:07:21
T2K beam dt = 8.2 ns
Inner: 2532 hits, 5837 pe
Outer: 2 hits, 1 pe
Trigger: 0x80000007
D_wall: 284.2 cm
e-like, p = 583.1 MeV/c

Charge (pe)
- >26.7
- 23.3-26.7
- 20.2-23.3
- 17.3-20.2
- 14.7-17.3
- 12.2-14.7
- 10.0-12.2
- 8.0-10.0
- 6.2-8.0
- 4.7-6.2
- 3.3-4.7
- 2.2-3.3
- 1.3-2.2
- 0.7-1.3
- 0.2-0.7
- < 0.2

0 mu-e decays

Times (ns)
demonstrate to reconstruct invariant mass using atmospheric ν data

SK atm. ν data and MC
(single + multi ring e-like event with T2K ν_e selection except for # of ring cut)
Systematic error on ν_e event selection at SK

- Evaluation using various control samples (atm ν, cosmic μ, ...)
- An example: NC$1\pi^0$ rejection efficiency

Real data electron ring (atm ν, ...) + MC simulation γ ring

- can produce the control sample w/ same topology as T2K NC$1\pi^0$
- compare the cut efficiency btw control sample data and its MC
\(\nu_e \) event selection at SK (cont’d)

6. Invariant mass of 2 \(\gamma \) rings forced to be found by the special fitter < 105 MeV/c^2

\(\checkmark \) rejects NC \(\pi^0 \) BG

\(\checkmark \) rejects NC \(\pi^0 \) BG

7. Reconstructed \(\nu \) energy < 1250 MeV

\(\checkmark \) rejects intrinsic beam \(\nu_e \) at high energy

After applying all criteria

BG rejection:

- >99.9% for \(\nu_\mu \) CC
- 77% for intrinsic beam \(\nu_e \) CC
- 99% for NC

Signal efficiency:

- 66% for \(\nu_\mu \rightarrow \nu_e \) CC
Pi0 mass cut

![Graph showing the number of events vs. invariant mass (MeV/c²) with different categories and cuts.]

- RUN1-3 data (3.010×10^{20} POT)
- Osc. ν_e CC
- $\nu_\mu + \bar{\nu}_\mu$ CC
- $\nu_e + \bar{\nu}_e$ CC
- NC

(MC w/ $\sin^22\theta_{13} = 0.1$)
Neutrino oscillation analysis
Main nu cross section parameters

Charged Current Quasi Elastic (CCQE)

Charged Current 1 \(\pi \) production (CC1\(\pi \))

Neutral Current 1 \(\pi^0 \) production (NC1\(\pi^0 \))

\[\nu_l \rightarrow \ell \rightarrow n \rightarrow p \]

\[\nu_l \rightarrow \ell \rightarrow n \rightarrow p \rightarrow \pi \]

\[\nu_l \rightarrow \ell \rightarrow n \rightarrow p \rightarrow \pi^0 \rightarrow \gamma \]

\[\nu_l \rightarrow \ell \rightarrow p(n) \rightarrow \pi^0 \rightarrow \gamma \]

\[\nu_l \rightarrow \ell \rightarrow p(n) \rightarrow \pi^0 \rightarrow \gamma \]

\[\nu_l \rightarrow \ell \rightarrow p(n) \rightarrow \pi^0 \rightarrow \gamma \]
Main nu cross section parameters

Charged Current Quasi Elastic (CCQE)

Charged Current 1 π production (CC1π)

Neutral Current 1 π⁰ production (NC1π⁰)

\[M_{A_{QE}} \approx 1.2 \text{GeV} \]
\[M_{A_{RES}} \approx 1.2 \text{GeV} \]
Main nu cross section parameters

Charged Current Quasi Elastic (CCQE)

Charged Current 1 π production (CC1π)

Neutral Current 1 π⁰ production (NC1π⁰)

\[M_A^{QE} \sim 1.2 \text{GeV} \]
\[M_A^{RES} \sim 1.2 \text{GeV} \]
\[p_F \sim 200 \text{MeV/c} \]
Main nu cross section parameters

- Charged Current Quasi Elastic (CCQE)
- Charged Current 1\(\pi\) production (CC\(1\pi\))
- Neutral Current 1\(\pi^0\) production (NC\(1\pi^0\))

\[\nu \rightarrow \ell \]

- \(M_A^{QE} \sim 1.2\text{GeV}\)
- \(M_A^{RES} \sim 1.2\text{GeV}\)
- \(p_F \sim 200\text{MeV/c}\)

- Nuclear Potential: Fermi Gas Model or Spectral function
Main nu cross section parameters

- Charged Current Quasi Elastic (CCQE)
- Charged Current 1 π production (CC1π)
- Neutral Current 1 π^0 production (NC1π^0)

- \(M_A^{QE} \sim 1.2 \text{GeV} \)
- \(M_A^{RES} \sim 1.2 \text{GeV} \)
- \(p_F \sim 200 \text{MeV/c} \)

- Nuclear Potential
- Final State Interaction (FSI)
Main nu cross section parameters

Charged Current Quasi Elastic (CCQE)

Charged Current 1 π production (CC1π)

Neutral Current 1 π^0 production (NC1π^0)

- $M_A^{QE} \sim 1.2$ GeV
- $M_A^{RES} \sim 1.2$ GeV
- $p_F \sim 200$ MeV/c

• Nuclear Potential
• Final State Interaction (FSI)
Signal prediction
(for example, ν_μ disapp.)

Fit ND280 data
momentum and angle
distribution of
CCQE and CCnonQE
to tune the flux and ν-
cross section parameters.
Sys on energy spectrum

8% at oscillation maximum

Reconstructed ν energy (GeV)

Fractional error
ND280フィット

Δχ² of Pseudo-experiments and Fit to Data

Δχ² From Fit to Data

Δχ² of Pseudo-experiments
Fitted χ² Distribution

Degrees of Freedom = 41.56 ± 0.20
Fit Probability = 0.45
Comparison w/ 2011 results

Best-fit + 68% C.L. error for individual run period

Results w/ Run3 only are consistent with Run1+2

Allowed region of $\sin^2 2\theta_{13}$ for each value of δ_{CP}

This result is consistent w/ the 2011 (Run1+2) results and is improved
Systematic error contribution to the predicted number of events in the oscillation analysis

<table>
<thead>
<tr>
<th>Error source</th>
<th>(\sin^2 2\theta_{13} = 0) w/o ND280 fit</th>
<th>(\sin^2 2\theta_{13} = 0) w/ ND280 fit</th>
<th>(\sin^2 2\theta_{13} = 0.1) w/o ND280 fit</th>
<th>(\sin^2 2\theta_{13} = 0.1) w/ ND280 fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam only</td>
<td>10.8</td>
<td>7.9</td>
<td>11.8</td>
<td>8.5</td>
</tr>
<tr>
<td>(M_A^{QE})</td>
<td>10.6</td>
<td>4.5</td>
<td>18.7</td>
<td>7.9</td>
</tr>
<tr>
<td>(M_A^{RES})</td>
<td>4.7</td>
<td>4.3</td>
<td>2.3</td>
<td>2.0</td>
</tr>
<tr>
<td>CCQE norm. ((E_\nu < 1.5 \text{ GeV}))</td>
<td>4.6</td>
<td>3.7</td>
<td>7.8</td>
<td>6.2</td>
</tr>
<tr>
<td>CC1(\pi) norm. ((E_\nu < 2.5 \text{ GeV}))</td>
<td>5.3</td>
<td>3.7</td>
<td>5.5</td>
<td>3.9</td>
</tr>
<tr>
<td>NC1(\pi^0) norm.</td>
<td>8.1</td>
<td>7.7</td>
<td>2.4</td>
<td>2.3</td>
</tr>
<tr>
<td>CC other shape</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Spectral Function</td>
<td>3.1</td>
<td>3.1</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>(p_F)</td>
<td>0.3</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>CC coh. norm.</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>NC coh. norm.</td>
<td>2.1</td>
<td>2.1</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>NC other norm.</td>
<td>2.6</td>
<td>2.6</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>(\sigma_{\nu_e}/\sigma_{\nu_\mu})</td>
<td>1.8</td>
<td>1.8</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>W shape</td>
<td>2.0</td>
<td>2.0</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>pion-less (\Delta) decay</td>
<td>0.5</td>
<td>0.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>CC1(\pi), NC1(\pi^0) energy shape</td>
<td>2.5</td>
<td>2.5</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>SK detector eff.</td>
<td>7.1</td>
<td>7.1</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>FSI</td>
<td>3.1</td>
<td>3.1</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>SK momentum scale</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>21.5</td>
<td>13.4</td>
<td>25.9</td>
<td>10.3</td>
</tr>
</tbody>
</table>
T2K Far detector events at beam timing

Events at the T2K beam timing synchronized by GPS

\[\Delta T_0 = T_{\text{GPS} @ \text{SK}} - T_{\text{GPS} @ \text{J-PARC}} - \text{TOF}(\sim 985 \mu\text{s}) \]
Fiducial volume cut (distance between recon. vertex and wall > 200cm)
Vertex distribution

beam direction

- Run 1+2 in FV
- Run 3 in FV
- non-FV

p-values of several distribution are calculated w/ toy MC

<table>
<thead>
<tr>
<th></th>
<th>RUN1+2</th>
<th>RUN3</th>
<th>RUN1+2+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{wall}</td>
<td>22.9%</td>
<td>94.7%</td>
<td>39.4%</td>
</tr>
<tr>
<td>$From_{wall}$ beam</td>
<td>1.34%</td>
<td>35.2%</td>
<td>6.05%</td>
</tr>
<tr>
<td>$R^2 + Z$</td>
<td>10.5%</td>
<td>74.6%</td>
<td>32.4%</td>
</tr>
</tbody>
</table>
Nue Selection

Number of rings

Number of events

RUN1-3 data

Osc. ν_e CC

$\nu^+ e^-$ CC

$\nu^- e^+$ CC

NC

(MC w/ sin$^2 \theta_{13} = 0.1$)

Number of events

RUN1-3 data

Osc. ν_e CC

$\nu^+ e^-$ CC

$\nu^- e^+$ CC

NC

(MC w/ sin$^2 \theta_{13} = 0.1$)

Number of events

RUN1-3 data

Osc. ν_e CC

$\nu^+ e^-$ CC

$\nu^- e^+$ CC

NC

(MC w/ sin$^2 \theta_{13} = 0.1$)

Visible energy (MeV)

Number of decay-e

S. Coleman - T2K Results

Inclusive energy (MeV)

Number of rings

Number of events

RUN1-3 data

Osc. ν_e CC

$\nu^+ e^-$ CC

$\nu^- e^+$ CC

NC

(MC w/ sin$^2 \theta_{13} = 0.1$)

Number of events

RUN1-3 data

Osc. ν_e CC

$\nu^+ e^-$ CC

$\nu^- e^+$ CC

NC

(MC w/ sin$^2 \theta_{13} = 0.1$)

Number of events

RUN1-3 data

Osc. ν_e CC

$\nu^+ e^-$ CC

$\nu^- e^+$ CC

NC

(MC w/ sin$^2 \theta_{13} = 0.1$)