Recent results from T2K

Motoyasu Ikeda (Kyoto University) for T2K collaboration

March. 5, 2013 Rencontres de Moriond

Content

- Introduction of T2K
- Results
 - $-v_{\mu}$ disappearance : ϑ_{23} &Δm₃₂ (New results in this winter)
 - $-v_e$ appearance: θ_{13} (shown in ICHEP 2012)
- Summary

T2K collaboration ~500 people from 11 countries

Introduction : Neutrino mixing

3 flavor neutrino mixing:

Current status

Solar and reactor (KamLAND) $\theta_{12} = 33.6^{\circ} \pm 1.0^{\circ}$

Atmospheric, accelerator

$$\theta_{23} = 45^{\circ} \pm 6^{\circ} (90\% \text{CL})$$

Accelerator, reactor (DayaBay,DoubleChooz,RENO) $\theta_{13} = 9.1^{\circ} \pm 0.6^{\circ}!$

Remaining questions:

- Is $\theta_{23} = \pi/4$?
- CP phase (δ) ?
- Mass hierarchy m₁<m₂<m₃? m₃<m₁<m₂?

Introduction : 2 modes in T2K

 v_{μ} disappearance

 $Prob(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin(1.27 \ \Delta m_{32}^2 L/E)$

Precise measurement of θ_{23} , Δm^2_{32}

v_e appearance

Prob(v_{μ} → v_{e}) ≈ sin² θ_{23} sin² $2\theta_{13}$ sin(1.27 Δm_{32} ²L/E) + CPV term + Matter term +...

Evidence of v_e *appearance in 2012!*

To answer the remaining questions, precise measurement of all parameters are necessary

Results Shown Today

• Data: from Jan 2010 to July 2012

3.01 × 10²⁰ Protons On Target (POT)

~4% of T2K's target POT (7.8 × 10^{21} POT) Stable v beam in whole period.

- Oscillation analysis results
 - Near detector measurement
 - $-v_{\mu}$ disappearance : $θ_{23}$ &Δm₃₂ (New results in this winter)
 - v_e appearance: θ_{13} (shown in ICHEP 2012)

Experimental setup of T2K

- Secondary π⁺(and K⁺) from
 30 GeV protons focused by
 three E.M. horns
- v_{μ} beam (mainly $\pi^+ \rightarrow \mu^+ + v_{\mu}$)
- Off axis neutrino beam(2.5°)
- Narrow band @ osc. max
- Reduce BG from high energy
- v direction stability < 1mrad</p>

ND280 Off axis neutrino detector

280m from target

THE PHOTO

SMRD

Downstream

Barrel ECAL

ECAL

Solenoid Coil

FGDs

POD ECAL

UA1 Magnet Yoke

POD

(π⁰-

-

detector)

ND280

Off axis neutrino detector

UA1 Magnet Yoke

SMRD

Downstream

Coil

Barrel ECAL

CAL

FGD

POD

ECAL

Signal: **Charged Current Quasi Elastic** (CCQE) interaction e or μ W Fine Grained Detector (FGD) with 1cm square plastic scintillators (1.6ton fiducial mass). **Tracker: FGD & TPC TPC provides PID(de/dx,charge) and** Momentum of each track.

ND280 Off axis neutrino detector

SMRD

FGDs

UA1 Magnet Yoke

TPC

Event Display of CC like event

Far Detector: Super-Kamiokande

Ikeno-yama at Gifu pref

1000m (2700mwe)

20inch (~50cm) PMT Fiducial volume is 2m from ID wall = 22.5 kton

11129 × 20inch PMT in ID

Particle ID technique

Ve CC simulation

Vµ CC simulation

Miss-PID probability ~ 1% !

Method of v oscillation analysis

v Flux prediction

With external hadron production data especially from NA61@CERN

Neutrino Cross section

Model(NEUT), uncertainties developed with fits to external data

<u>ND280</u>

<u>Measurement</u>

Momentum and angle of $v_{\mu}CCQE$ and CCNONQE

 Fit the ND280 Data to refine flux and v-int. model

• Verification with $v_e \& \pi^0$ data @ND280

SK prediction

Tuned MC based on ND280 measurement

Comparison

SK Measurement

 v_{μ} disappearance: # of events and energy spectrum

Neutrino oscillation parameter fit

- 2 different methods
- Maximum likelihood method with reconstructed Ev $\mathcal{L}(\vec{o}, \vec{f}) = \mathcal{L}_{norm}(\vec{o}, \vec{f}) \times \mathcal{L}_{shape}(\vec{o}, \vec{f}) \times \mathcal{L}_{syst}(\vec{f})$
 - Where *o* and *f* are v oscillation parameters and systematic error parameters.
 - Vacuum oscillation is used (matter effect is small)
- Likelihood-ratio method with reconstructed Ev

 $\chi^2 = 2\sum_E \left(N_{SK}^{data} \ln \frac{N_{SK}^{data}}{N_{SK}^{exp}} + (N_{SK}^{exp} - N_{SK}^{data}) \right) + (\overrightarrow{f} - \overrightarrow{f_0})^T C^{-1} (\overrightarrow{f} - \overrightarrow{f_0})$

- N_{SK} is number of event in SK for each energy bin
- f_0 is default systematic parameters, and C is covariance .
- Matter effect is taken into account.

v osc. analysis (v_{μ} disappearance) Preliminary

16

Effect of systematics

Error is still dominated by stat. error.

v_e appearance

Data taking status & prospect

Currently beam power: **230kW** (~150kW in last year) Very stable operation.

Almost double POT since Run3 (as of March)

Expected P.O.T. This year : 8×10^{20} (5 σ for v_e appearance) 2014 : 12 × 10²⁰ 2015 : 18 × 10²⁰ Goal : 78 × 10²⁰ Current & Expected P.O.T

Please look forward to more results from T2K!!

Summary

- T2K results are presented with 3.01 × 10²⁰ POT (~4% of ultimate POT)
- v_{μ} disappearance: World record on θ_{23} ! ($\sin^2 2\theta_{23}, \Delta m_{23}^2$) =(1.00_{-0.068}, 2.45±0.30×10⁻³ eV²) 90% C.L.
- v_e appearance: 3.2 σ significance. Evidence!! $sin^2 2\theta_{13} = 0.094 \begin{array}{c} +0.053 \\ -0.040 \end{array} (0.116 \begin{array}{c} +0.063 \\ -0.049 \end{array})$ for N.H. (I.H)

Prospect

- Keep stable data taking (current beam power ~230kW)
- 8×10^{20} POT by this summer ($\rightarrow 5\sigma$ for v_e app.)
- Aim to accumulate 12 × 10²⁰ POT (2014) and 18 × 10²⁰ POT (2015)

back up

Physics

CPV measurement

• CPV term in Prob($v_{\mu} \rightarrow v_{e}$) \propto

$\sin\theta_{12}$ · $\sin\theta_{23}$ · $\sin\theta_{13}$ · $\sin\delta$

Now we know θ_{13} is not 0!

This has opened up the possibility to measure CPV in lepton sector

Note: The largest uncertainty is on θ_{23} <u>Both</u> v_e appearance and v_{μ} disappearance are very important to for future CPV measurement

Unveil the lepton mixing structure

$$\begin{split} U_{PMNS} \approx \begin{pmatrix} 0.8 & 0.55 & 0.15 \\ -0.4 & 0.6 & 0.7 \\ 0.4 & -0.6 & 0.7 \end{pmatrix} \\ \delta = ? \end{split} \qquad \begin{aligned} U_{CKM} \approx \begin{pmatrix} 0.97 & 0.23 & 0.004 \\ 0.23 & 0.97 & 0.04 \\ 0.009 & 0.04 & 1 \end{pmatrix} \\ \delta = 69^{\circ} \end{split}$$

We want to understand the underlying physics to explain the structure of lepton mixing with **precise measurements of parameters**

$\nu_{\mu} \rightarrow \nu_{e}$ appearance

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right) \quad \textcircled{\textbf{\theta}_{13}} \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \left[\begin{array}{c} \mathsf{CPC} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} & \mathsf{CPV} \\ &+ 4S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E} & \mathsf{Solar} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}\left(1 - 2S_{13}^{2}\right) & \mathsf{Matter effect (small in T2K)} \end{split}$$

$$a \rightarrow -a, \delta \rightarrow -\delta$$
 for $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$

L=295km, <Ev>~0.6GeV

$$a = 7.56 \times 10^{-5} [\text{eV}^2] \cdot \left(\frac{\rho}{[\text{g/cm}^3]}\right) \cdot \left(\frac{E}{[\text{GeV}]}\right)$$

Mass hierarchy

Goal of T2K

First Goal

- Discovery of $v_{\mu} \rightarrow v_{e}$ (θ_{13} measurement) Achieved in 2012!

Super-K@Kamioka

295km

Ultimate Goal

- Precision measurement of v_{μ} disappearance -Measurement (/indication/hint) of δ_{CP} and the mass hierarchy.

Beam line and monitors

Run1-2 (2010-2011) : 1.43 × 10²⁰ Protons on target (p.o.t.) Run3 (2012) : 1.58 × 10²⁰ p.o.t.

• Confirmed that the beam quality is unchanged after the earthquake

Achieved stable 200kW beam power operation.

Total number of protons is 3.01×10^{20} p.o.t for this analysis

J-PARC neutrino beamline components

For off axis beam \rightarrow Beam direction monitors are very important

Muon beam center position by MUMON 118m from target

1mrad change makes the peak of v spectrum by 2-3%(=error on Δm^2) INGRID also shows good stability of neutrino beam

INGRID event selection

Select neutrino event in FV

- Coincident hits in X-Y plane & Timing cut → Reject accidental hits
- Reconstruct one track.
- Select vertex inside fiducial volume → Veto sand muon, cosmic

Neutrino flux prediction

SK nue BKG by beam nue

CERN NA61/SHINE measurement

Measure hadron(π , K) yield distribution in 30 GeV p + C inelastic interaction

- thin target $4\%\lambda_1$ (2cm)

~13m NA61/SHINE setup MTPC-ToF-L Vertex magnets ToF-F VTPC-2 VTPC-1 Target 10m ToF-R MTPC-R Large acceptance spectrometer + TOF detector performance

 $\begin{aligned} \sigma(p)/p^2 &\approx 2 \times 10^{-3}, \ 7 \times 10^{-3}, \ 3 \times 10^{-2} (\text{GeV/c})^{-1} \ \sigma(\text{dE/dx})/\langle \text{dE/dx} \rangle \approx 0.04^{-1} \\ \text{for } p > 5, \ p = 2, \ p = 1 \ \text{GeV/c} \qquad \sigma(\text{TOF-F}) \approx 115 \ \text{ps} \end{aligned}$

π⁺ production: Two analysis for different momentum region

Results of pion production from thin target (2007 data)

N.Abgrall et al., arXiv:1102.0983 [hep-ex] submitted to Phys.Rev.C (2011)

Systematic uncertainty was evaluated in each (p,θ) bin typically 5-10%

The normalization uncertainty is 2.3% on the overall (p, θ)

→ Propagate the systematic uncertainty in each (p,θ) bin into the expected number of events in T2K

→ Input to T2K neutrino beam simulation

Near future operation plan of MR-FX

Periods	Expected beam power	Improvements / Cycle time
2011. 6-11	shutdown	Ring collimator shields, 7 th and 8 th RF systems, New injection kicker
2011. 12 - 2012. 6	100 - 200 kW (RCS 300 kW eq.)	Cycle time 3.2 -> 2.56 Beam loading compensation
2012. 7 – 9	shutdown	Ring collimator upgrade (0.45 -> 2 kW) 9 th RF system
2012. 10 – 2013. 7	> 200 kW (2012.10~) (RCS 300-400 kW eq.)	Cycle time 2.48 -> 2.4 s Second harmonic cavities
2013. 8 – 2013. 1	shutdown	Ring collimator upgrade (2 kW -> 3.5 kW) Linac upgrade
2014. 2 – 2014. 6	> 300 kW (RCS > 600 kW eq.)	Cycle time 2.4 s

Koseki @ HK open meeting

http://indico.ipmu.jp/indico/getFile.py/access?contribId=13&sessionId=3&resId=0&materialId=slides&conf_Id=7

ND280

Off-axis Near Detectors (ND280)

In present analysis,

- 2 fine grained detectors (FGDs)
- Active target
- 1.6t fiducial mass
- 3 time projection chambers (TPCs)
- PID(by dE/dx), Momentum, Charge

Measure v flux/spectrum before oscillation

SMR

P0D ECAL Downstream

Barrel ECAL

ECAL

Solenoid Coil

UA1 Magnet Yoke

detector)

$p_{\mu}, \theta @ ND280 Color: MC, Box: Data$

Beam v_emeasurement **TPC+FGD+ECAL** POD Entries / (100 MeV/c) Oth BCG Signal # of Events 45 $\textbf{Misid}\,\mu\,\textbf{BCG}$ 40 γ BCG 35E ν_e 30Ē $no \mu no \pi^0$ 30 Out of POD 25 25 - Data 20 20 15 15 10 5 0 500 1000 1500 2000 2500 3000 2 2.53.5 4.5 5.5 3 5 p (MeV/c) Reconstructed E_v (GeV)

- Only one shower like track
- Energy threshold 1.5GeV

- Largest negative track from FGD
- Largest track is e-like
 (TPC de/dx, and Ecal shower like)

MC consistents with data

POD NCπ⁰ measuremsnt

• Main BG for nue appearance at SK

Selection

- •no µlike track
- 2 shower like track
- no µ-decay electron
- Forward tracks
- Track distance > 5cm

Data/MC = 0.84 ± 0.16 (stat) ± 0.18(sys)

MC consistent with data

CC Inclusive cross section

 $\langle \sigma_{\rm CC} \rangle_{\phi} = (6.93 \pm 0.13(stat) \pm 0.85(syst)) \times 10^{-39} \frac{\mathrm{cm}^2}{\mathrm{nucleons}}$

SK

\mathbf{v}_{e} signal and background at Super-K

- Signal: Single electron event
 - Mainly Charged Current Quasi Elastic (CCQE)

:
$$v_e + n \rightarrow e^- + p$$

μ Oscillation

Proton is below Cherenkov Threshold

 $\pi^0 \rightarrow$

- Main background:
 - intrinsic v_e (estimated from beam MC)
 - $-\pi^0$ from Neutral Current interaction (NC π^0)
 - Overlap of 2γs
 - Missing out on 1γ $\mathbf{v}_{\mathbf{x}}$ when one of γ has very low energy

е

ve appearance

- 1. Events in the T2K beam timing and fully contained (FC) in ID
- 2. Fiducial volume cut
- 3. Single electron cut
 - Number of ring = 1 and e-like event
- 4. Visible energy > 100 MeV
 - Rejects low energy NC events and electrons from invisible μ , π decays
- 5. No decay electron
 - To eliminate non-CCQE, miss identified μ event
- 6. Invariant mass < 105 MeV
 - To eliminate NC π^0 background
- 7. Reconstructed energy (assuming CCQE)
 - < 1250MeV

v_{μ} disappearance

- Signal: Single μ event
 - CCQE enriched sample for

energy spectrum measurement.

- Background:
 - CC non-QE (ex. CC1π, etc.)
- Selection criteria
 - T2K beam timing & FCFV
 - Single ring µ-like event
 - less than 2 decay electron (to reduce CC non-QE)
 - Reconstructed μ momentum > 200 MeV/c

Observed v_e candidate event (No.1)

Observed v_e candidate event (No.2)

demonstrate to reconstruct invariant mass using atmospheric v data

Systematic error on ν_{e} event selection at SK

- Evaluation using various control samples (atm v, cosmic μ , ...)
- An example : NC1 π^0 rejection efficiency

Real data electron ring (atm v, ...) + MC simulation γ ring

- ✓ can produce the control sample w/ same topology as T2K NC1π⁰
- ✓ compare the cut efficiency btw control sample data and its MC

v_e event selection at SK (cont'd)

6.Invariant mass of 2 γ rings forced to be found by the special fitter < 105MeV/c²

7. Reconstructed v energy < 1250MeV

 ✓ rejects intrinsic beam v_e at high energy

After applying all criteria BG rejection : >99.9% for $v_{\mu}CC$ >77% for intrinsic beam $v_{e}CC$ >99% for NC Signal efficiency : >66% for $v_{\mu} \rightarrow v_{e}CC$

Pi0 mass cut

Neutrino oscillation analysis

Signal prediction (for example, v_{μ} disapp.)

Fit ND280 data momentum and angle distribution of CCQE and CCnonQE to tune the flux and vcross section parameters.

Correlation Matrix

ND280フィット

Comparison w/ 2011 results

Results w/ Run3 only are consistent with Run1+2 This result is consistent w/ the 2011(Run1+2) results and is improved

0.6

Systematic error contribution to the predicted

number of events in the oscillation analysis

	$\sin^2 2\theta_{13} = 0$		$\sin^2 2\theta_{13}$	$_{3} = 0.1$
Error source	$\rm w/o~ND280$ fit	w/ ND280 fit	w/o ND280 fit	w/ ND280 fit
Beam only	10.8	7.9	11.8	8.5
M_A^{QE}	10.6	4.5	18.7	7.9
M_A^{RES}	4.7	4.3	2.3	2.0
CCQE norm. $(E_{\nu} < 1.5 \text{ GeV})$	4.6	3.7	7.8	6.2
$CC1\pi$ norm. ($E_{\nu} < 2.5 \text{ GeV}$)	5.3	3.7	5.5	3.9
$NC1\pi^0$ norm.	8.1	7.7	2.4	2.3
CC other shape	0.2	0.2	0.1	0.1
Spectral Function	3.1	3.1	5.4	5.4
p_F	0.3	0.3	0.1	0.1
CC coh. norm.	0.2	0.2	0.2	0.2
NC coh. norm.	2.1	2.1	0.6	0.6
NC other norm.	2.6	2.6	0.8	0.8
$\sigma_{\nu_e}/\sigma_{\nu_{\mu}}$	1.8	1.8	2.6	2.6
W shape	2.0	2.0	0.9	0.9
pion-less Δ decay	0.5	0.5	3.5	3.5
$CC1\pi$, $NC1\pi^0$ energy shape	2.5	2.5	2.2	2.2
SK detector eff.	7.1	7.1	3.1	3.1
FSI	3.1	3.1	2.4	2.4
SK momentum scale	0.0	0.0	0.0	0.0
Total	21.5	13.4	25.9	10.3

T2K Far detector events at beam timing

Events at the T2K beam timing synchronized by GPS

Clear beam structure !

 $\Delta T_0 = T_{GPS}@SK - T_{GPS}@J-PARC - TOF(~985\mu sec)$

Fiducial volume cut (distance between recon. vertex and wall > 200cm)

p-values of	f several	distribution	are	calculated	W/	toy	ΜС
-------------	-----------	--------------	-----	------------	----	-----	----

	RUN1+2	RUN3	RUN1+2+3
Dwall	22.9%	94.7%	39.4%
Fromwall beam	1.34%	35.2%	6.05%
$R^2 + Z$	10.5%	74.6%	32.4%

Nue Selection

NuMu Selection

