

Light Sterile Neutrinos as Dark Radiation Candidates

Irene Tamborra

von Humboldt Research Fellow at the MPI for Physics, Munich

Rencontres de Moriond, EW Interactions and Unified Theories La Thuile, March 5, 2013

Roadmap

Oscillation experiment anomalies \longrightarrow sterile neutrinos [$\delta m_s^2 \sim \mathcal{O}(\mathrm{eV}^2)$]

Dark radiation hints

light sterile neutrinos

	sub-eV mass	eV mass
fully thermalized sterile neutrinos		
hot dark matter bounds		
agreement with terrestrial anomalies		

Is full-thermalization assumption justified? Could thermalization be prevented?

Experimental Hints for Sterile Neutrinos

Experimental hints for sterile neutrinos

Observations at odds with standard 3-neutrino interpretation of global oscillation data.

- Appearance signals:

- LSND anomaly [A. Aguilar et al., PRD 64, 112007 (2001)]
 ICARUS "LSND-like anomaly" [M. Antonello et al., arXiv: 1209.0122]
- MiniBooNE data [A.A.Aguilar-Arevalo et al., arXiv: 1207.4809]

- Disappearance signals:

- ★ Short-baseline disappearance data (Bugey, ROVNO, ILL)
- * Reactor anomaly [Mention et al. PRD 83, 073006 (2011), Huber, PRC 84, 024617 (2011)]

★ Gallium anomaly [Giunti, Laveder, PRC 83, 065504 (2011), Giunti et al. PRD 86, 113014 (2012)]

Sterile neutrinos with mass up to $\delta m_s^2 \sim \mathcal{O}(eV^2)$ explain quite well these anomalies.*

* See white paper on sterile neutrinos for more details: K.N. Abazajian et al., arXiv: 1204.5379.

Cosmological Hints for Sterile Neutrinos

Radiation content of the universe

The radiation content of the universe expressed in terms of $N_{\rm eff}$ (any relativistic d.o.f.).

$$\rho_r = \rho_\gamma \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right]$$

Recent results:

WMAP-9+eCMB+BAO+H0 find $N_{\rm eff} = 3.84 \pm 0.4$

Z. Hou et al., arXiv: 1212.6267, J. Hamann, JCAP 1203 (2012) 021, Smith et al., PRD 85 (2012) 023001, Archidiacono et al., PRD 84 (2011) 123008. ** Y.I. Izotov and T.X. Thuan, Astrophys. J. 710 (2010) L67.

How is the radiation excess explained?

Main radiation components: Three active neutrino families, photons.

Extra-radiation components: Light sterile neutrinos [other candidates allowed]

Assuming the existence of light sterile neutrinos, they mix with the active ones.

Allowed scenarios

normal hierarchy (NH): $\delta m_s^2 > 0$ inverted hierarchy (IH): $\delta m_s^2 < 0$

Caveat: Structure formation data strongly disfavor the IH scenario with sterile masses above 0.2-0.3 eV.

Big Bang Nucleosynthesis bounds

Assuming fully thermalized sterile states, BBN constraints the sterile family number N_s .

BBN: ⁴*He* prefers $N_s > 0$, but it may be difficult to accommodate $N_s = 2!$ *

⁷ J. Hamann et al., PRL 105, 181301 (2010). J. Hamann et al., JCAP 1109 (2011) 034. G. Mangano and P. Serpico, Phys. Lett. B 701 (2011) 296.

Cosmological bounds: sub-eV masses

 $m_s \gtrsim 1 \text{ eV}$ is viable only if additional ingredients are included (too much hot dark matter).**

* J. Hamann, S. Hannestad, G.G. Raffelt, I. Tamborra, and Y.Y.Y. Wong, PRL 105, 181301 (2010).

**J. Hamann et al., JCAP 1109 (2011) 034.

See also E. Giusarma et al., PRD 83, 115023 (2011), S. Joudaki, K. Abazajian, M. Kaplinghat, arXiv: 1208.4354.

Combined bounds: eV-masses (short-baseline + cosmological data)

⁶ M. Archidiacono et al., arXiv: 1302.6720. See also: M. Archidiacono et al. PRD 86 (2012) 065028, S. Joudaki, K. Abazajian, M. Kaplinghat, arXiv: 1208.4354.

Combined bounds: eV-masses (short-baseline + cosmological data)

M. Archidiacono et al., arXiv: 1302.6720.

See also: M. Archidiacono et al. PRD 86 (2012) 065028, S. Joudaki, K. Abazajian, M. Kaplinghat, arXiv: 1208.4354.

Are sterile neutrinos fully thermalized?

Thermalization of sterile neutrinos

★ BBN constraints assume fully thermalized sterile neutrinos.

- ★ Cosmo and SBL data agree assuming not fully thermalized sterile neutrinos.
- ★ If Planck does not find excess of radiation, how do terrestrial anomalies fit with cosmology?

Let's assume for simplicity* (1 active + 1 sterile) scheme:

Thermalization of sterile neutrinos

The density matrix associated with each momentum is written in terms of the Bloch vectors

$$\rho = \frac{1}{2} f_0(P_0 + \mathbf{P} \cdot \sigma) , \qquad \overline{\rho} = \frac{1}{2} f_0(\overline{P}_0 + \overline{\mathbf{P}} \cdot \sigma)$$

The neutrino kinetic equations for each mode are (with $d_t = \partial_t - Hp\partial_p$)**

$$\mathbf{V} = \mathbf{V}(\delta m_s^2, \theta_s, L^{(a)}, p, T) \qquad \text{(loss of quantum coherence)}$$

$$\dot{\mathbf{P}} = \mathbf{V} \times \mathbf{P} - D(P_x \mathbf{x} + P_y \mathbf{y}) + \dot{P}_0 \mathbf{z}$$

$$\dot{P}_0 = \Gamma \left[\frac{f_{\text{eq}}}{f_0} - \frac{1}{2}(P_0 + P_z) \right]$$
scattering rate

^{**} G. Sigl and G.G. Raffelt, Nucl. Phys. B 406, 423 (1993).

* Enqvist et al. (1990, 1991, 1992), Foot, Thomson and Volkas (1995), Bell, Volkas and Wong (1998), ... See also Mirizzi et al., PRD 86 (2012) 053009.

Thermalization of sterile neutrinos ($L^{(a)} = 10^{-2}$)

Partial or no-thermalization occurs for O(eV) mass sterile neutrinos at $T \simeq 1$ MeV, supposing large initial leptonic asymmetry.

* S. Hannestad, I. Tamborra, and T. Tram, JCAP 07 (2012) 025.
 ** J. Hamann et al., PRL 105, 181301 (2010).
 ***C. Giunti and M. Laveder, PLB 706, 200 (2011).
 See also N. Saviano et al., arXiv: 1302.1200.

Conclusions

- Cosmological data favor excess of radiation in the universe. Low-mass sterile neutrinos are one natural possibility.
- One/two sub-eV/eV sterile states allowed from cosmology (CMB+LSS).
 BBN allows one fully thermalized sterile state.
- ★ Assuming partial thermalization, agreement between cosmology and short-baseline data for both 3+1 and 3+2 schemes.
- ★ Large initial leptonic asymmetry prevents thermalization of sterile states.
- **★** Planck will provide very precise constraints ($\Delta N_{\text{eff}} = \pm 0.26$ or better).

Thank you for your

Back-up slides

Experimental bounds for sterile neutrinos

* M. Archidiacono et al., arXiv: 1302.6720.

Thermalization: Mixing dependence

S. Hannestad, I. Tamborra, and T. Tram, JCAP 07 (2012) 025.

Thermalization begins at higher T and it is more efficient ($L^{(a)} = 0$) large mixing angles large mass differences

Thermalization of sterile neutrinos $(L^{(a)} = 0)$

Sterile neutrinos with ~O(eV) mass are **thermalized** for null leptonic asymmetries a $T \simeq 1$ MeV.

* S. Hannestad, I. Tamborra, and T. Tram, JCAP 07 (2012) 025.

** J. Hamann et al., PRL 105, 181301 (2010). ***C. Giunti and M. Laveder, PLB 706, 200 (2011). See also N. Saviano et al., arXiv: 1302.1200.

Thermalization of sterile neutrinos $(L^{(a)} = 0)$

Iso- δN_{eff} contours for $L^a = 0$.

Sterile neutrinos with ~O(eV/sub-eV) mass are thermalized for initial null leptonic asymmetries at $T \simeq 1 \text{ MeV}$.

S. Hannestad, I. Tamborra, and T. Tram, JCAP 07 (2012) 025.

** J. Hamann et al., PRL 105, 181301 (2010). ***C. Giunti and M. Laveder, PLB 706, 200 (2011). See also N. Saviano et al., arXiv: 1302.1200.

Thermalization of sterile neutrinos $(L^{(a)} = 10^{-2})$

Partial or no-thermalization occurs for sterile neutrinos with ~O(eV/sub-eV) mass and large initial leptonic asymmetries at $T \simeq 1 \text{ MeV}$.

S. Hannestad, I. Tamborra, and T. Tram, JCAP 07 (2012) 025.

** J. Hamann et al., PRL 105, 181301 (2010). ***C. Giunti and M. Laveder, PLB 706, 200 (2011). See also N. Saviano et al., arXiv: 1302.1200.

SPT & ACT

	W9+SPT	W9+SPT + HST	W9+SPT +BAO	W9+SPT +SNLS3	W9+SPT +BAO+HST	W9+SPT +BAO+SNLS3
$N_{\rm eff}$	3.66 ± 0.61	4.08 ± 0.54	3.76 ± 0.67	4.04 ± 0.68	4.21 ± 0.46	3.87 ± 0.68
$\sum m_{\nu}$ (eV)	1.35 ± 0.55	0.48 ± 0.33	0.56 ± 0.22	< 0.91	0.56 ± 0.23	0.50 ± 0.21

TABLE III: Mean values and errors (or 95% CL bounds) on N_{eff} and $\sum m_{\nu}$ (in eV) in a standard cosmology with N_{eff} massive neutrinos for the different combinations of data sets in the case of considering SPT high multipole data.

$N_{\text{eff}} = 2.64 \pm 0.51 \ 3.20 \pm 0.38 \ 2.63 \pm 0.48 \ 2.75 \pm 0.44 \ 3.44 \pm 0.37 \ 2.78 \pm 0.46$		W9+ACT	W9+ACT + HST	W9+ACT +BAO	W9+ACT +SNLS3	W9+ACT +BAO+HST	W9+ACT +BAO+SNLS3
$N_{\rm eff} = 2.04 \pm 0.31 \ 3.20 \pm 0.38 \ 2.03 \pm 0.48 \ 2.73 \pm 0.44 \ - 3.44 \pm 0.37 \ - 2.78 \pm 0.40$	λĩ	264 ± 0.51	2 20 1 0 20	-262 ± 0.48	-7511255	+ DAO $+$ IISI	278 ± 0.46
	IVeff	2.04 ± 0.31	3.20 ± 0.38	2.03 ± 0.48	2.75 ± 0.44	3.44 ± 037	2.78 ± 0.40

TABLE V: Mean values and errors on N_{eff} and 95% CL upper bounds on $\sum m_{\nu}$ (in eV) in a standard cosmology with N_{eff} massive neutrinos for the different combinations of data sets in the case of considering ACT high multipole data.

M. Archidiacono et al., arXiv: 1303.0143.