Analysis of np->d $\pi^{+} \pi^{-}$reactions at 1.25 GeV with HADES spectrometer

- Motivation
- Data Analysis
- WASA di-baryon resonance model
- Summary and Outlook

Why analyzing $\mathrm{pn} \rightarrow \mathrm{d} \pi^{+} \pi^{-}$?

- Specific interest of systematic study of 2π channels in pp and pn :
$\mathrm{N}^{*}(1440) \rightarrow \Delta \pi, \mathrm{N}^{*}(1440) \rightarrow \mathrm{N}(\pi \pi)$ s-wave, $\mathrm{N}^{*}(1440) \rightarrow \rho \mathrm{N}, \Delta \Delta$ excitation
- Indication for a $\mathrm{I}=0$ dibaryon resonance in the $\mathrm{pn} \rightarrow \mathrm{d} \pi^{0} \pi^{0}$ reaction (ABC effect)

Signal expected to be smaller in the $\mathrm{pn} \rightarrow \mathrm{d} \pi^{+} \pi^{-}$channel ($\mathrm{I}=0$ and $\mathrm{I}=1$), but it is important to check the description of all isospin channels

- comparison $\mathrm{pn} \rightarrow \mathrm{NN} \pi \pi, \mathrm{pp} \rightarrow \mathrm{NN} \pi \pi, \mathrm{pd} \rightarrow \mathrm{NN} \pi \pi$ extensively studied with WASA-at-Cosy \rightarrow comparison of the data.
- In connection to $\mathrm{pn} \rightarrow \mathrm{Xe}^{+} \mathrm{e}^{-}$HADES data, constraints on the contribution of $\mathrm{pn} \rightarrow \mathrm{de}^{+} \mathrm{e}^{-}$can be obtained from $\mathrm{pn} \rightarrow \mathrm{d} \pi^{+} \pi^{-}$

Other double $-\pi$ results from HADES $-\mathrm{E}_{\mathrm{k}}=1.25 \mathrm{GeV}$

$$
p p \rightarrow p p \pi^{+} \pi^{-}
$$

M. Gumberidze (IPN Orsay)

$\mathbf{n p} \rightarrow \mathbf{n p} \pi^{+} \boldsymbol{\pi}^{-}$
A. Kurilkin (Dubna)

Data shows sensitivity to different models, ongoing comparisons.

$M_{\pi \tau}$ for different beam energies

P. Adlarson et. al Phys. Rev. Lett. 106:242302, 2011

ABC effect - presentation of Annette Pricking (WASA-at-COSY coll.) from MESON2012

A New Resonance: Total Cross Section pn $\left.\rightarrow d \pi^{0} \pi^{0} \longrightarrow 1\right)$)

The HADES spectometer

- Detector geometry

full azimuthal range covered, 6 sectors
polar angle: $16^{\circ}<\theta<84^{\circ}$

-Tracking

Superconducting coils, toroidal field
24 Mini Drift Chambers
-Particle identification (e, p, K, p)
RICH, MDC, TOF, TOFINO, Shower (RPC)

-Resolutions

$\Delta \mathrm{M} \omega / \mathrm{M} \omega \sim 2.1 \%$ at ω peak
$\Delta \mathrm{p} / \mathrm{p} \sim 2-3 \%$ for proton and π

- Forward Wall:

Plastic scintillators covering θ angles up to 7°
Detector dedicated to tag proton spectator

$$
\begin{array}{ll}
\text { - Cells in FW: } & \\
140 \text { small } 4 \times 4 \mathrm{~cm} & \rightarrow\left(0^{\circ}<\theta<2^{\circ}\right) \\
64 \text { middle } 8 \times 8 \mathrm{~cm} & \rightarrow\left(2^{\circ}<\theta<3.3^{\circ}\right) \\
\text { 84 large } 16 \times 16 \mathrm{~cm} & \rightarrow\left(3.3^{\circ}<\theta<7.2^{\circ}\right)
\end{array}
$$

Designed for di-electron spectroscopy, also suited for the charged hadron detection

Kinematics and phase space simulation

Time distribution from silulation

deuteron theta vs two pion invariant mass - sim 4π np $\pi \pi$ channel

ठ

Signal: $d+p \rightarrow d \pi^{+} \pi^{-}+p_{\text {spec }}$

Independent on FW momentum.

$$
\mathrm{n}=\mathrm{p}_{\mathrm{pspect}} \mathrm{x} \mathrm{p}_{\mathrm{d}}
$$

Coplanarity condition:
Opening angle $\left(\mathrm{p}_{\text {beam }}-\mathrm{p}_{\pi \pi-}, \mathrm{n}\right)=90 \mathrm{deg}$

Background: $\mathrm{d}+\mathrm{p} \rightarrow \mathrm{np} \pi^{+} \pi^{-}+\mathrm{p}_{\text {spec }}$
Simulations in quasi free kinematics:
${ }^{\prime} n^{\prime}+\mathrm{p} \rightarrow \mathrm{d} \pi^{+} \pi^{-}$- phase space
${ }^{\prime} \mathrm{n}^{\prime}+\mathrm{p} \rightarrow \mathrm{np} \pi^{+} \pi^{-}$- phase space

In acceptance

PID in HADES and Forward Wall

PID π^{+}- experiment

spectator time distribution

PID π^{-}- experiment

spectator momentum distribution

Deuteron in FWall time distribution

Coplanarity - Signal and Background estimation $\mathrm{d} \pi^{+} \pi^{-} / \mathrm{np} \pi^{+} \pi^{-}$

$\pi \pi$ invariant mass

Still background subtraction needed

Di-baryon resonance d^{*} - model from Mikhail Bashkanov (WASA)

pion invariant mass vs deuteron theta $(\mathrm{I}=0$ channel in 4π)
pion invariant mass vs deuteron theta ($\mathrm{I}=1$ channel in 4π)

acc $\sim 0.55 \%$

pion invariant mass vs pion theta -4π

Di-pion mass changes with total energy -4π

Di-pion mass changes with total energy - HADES acceptance

Summary and Outlook

$$
\begin{aligned}
& \mathrm{d}+\mathrm{p} \rightarrow \mathrm{~d} \pi^{+} \pi^{-}+\mathrm{p}_{\text {spec }} \\
& \mathrm{d}+\mathrm{p} \rightarrow \mathrm{np} \pi^{+} \pi^{-}+\mathrm{p}_{\text {spec }}
\end{aligned}
$$

- Full chain phase space simulation for the $\mathrm{d} \pi^{+} \pi^{-}$and $\mathrm{np} \pi^{+} \pi^{-}$channels to improve PID and estimate signal/ background ratio
- Acceptance and Efficiency matrices
- Experimental data corrected for efficiency simulation filtered by acceptance and smeared
- ABC effect and WASA di-baryon resonance model compared with HADES experimental data

To Do:

- Improvement of the signal extraction
.Deuteron selection by missing mass method ($\mathrm{pn} \rightarrow \pi^{+} \pi^{-} \mathrm{X}$): extension to the „blind" area
- Application of the method of deuteron selection and coplanarity to e+e- analysis

Thank you.
The end
fw_theta_2:pip_theta

