

Analysis of np->d $\pi^+\pi^-$ reactions at 1.25 GeV with HADES spectrometer

Hubert Kuc – UJ Krakow, IPN Orsay hubertkuc@gmail.com

GDR 6-7.12.2012

Motivation

- Data Analysis
- WASA di-baryon resonance model
- Summary and Outlook

Why analyzing pn \rightarrow d $\pi^+\pi^-$?

• Specific interest of systematic study of 2π channels in pp and pn: N*(1440) $\rightarrow \Delta \pi$, N*(1440) \rightarrow N ($\pi\pi$)s-wave, N*(1440) $\rightarrow \rho$ N, $\Delta\Delta$ excitation

• Indication for a I=0 dibaryon resonance in the pn \rightarrow d $\pi^0\pi^0$ reaction (ABC effect) Signal expected to be smaller in the pn \rightarrow d $\pi^+\pi^-$ channel (I=0 and I=1), but it is important to check the description of all isospin channels

• comparison pn \rightarrow NN $\pi\pi$, pp \rightarrow NN $\pi\pi$, pd \rightarrow NN $\pi\pi$ extensively studied with WASA-at-Cosy \rightarrow comparison of the data.

• In connection to pn \rightarrow Xe⁺e⁻ HADES data, constraints on the contribution of pn \rightarrow de⁺e⁻ can be obtained from pn \rightarrow d $\pi^+\pi^-$

Other double- π results from HADES – E_k =1.25GeV

 $pp \rightarrow pp \pi^+ \pi^-$

M. Gumberidze (IPN Orsay)

 $np \rightarrow np\pi^+\pi^-$

A. Kurilkin (Dubna)

Data shows sensitivity to different models, ongoing comparisons.

ABC effect – presentation of Annette Pricking (WASA-at-COSY coll.) from MESON2012

P. Adlarson et. al Phys. Rev. Lett. 106:242302, 2011

ABC effect – presentation of Annette Pricking (WASA-at-COSY coll.) from MESON2012

A New Resonance: Total Cross Section $pn \rightarrow d\pi^0 \pi^0$

The HADES spectometer

• Detector geometry full azimuthal range covered, 6 sectors polar angle: $16^{\circ} < \theta < 84^{\circ}$

•**Tracking** Superconducting coils, toroidal field 24 Mini Drift Chambers

•**Particle identification (e, p, K, p)** RICH, MDC, TOF, TOFINO, Shower (RPC)

•**Resolutions** $\Delta M\omega/M\omega \sim 2.1\%$ at ω peak $\Delta p/p \sim 2-3\%$ for proton and π

• Forward Wall:

Plastic scintillators covering θ angles up to 7° Detector dedicated to tag proton spectator

• Cells in FW:

140 small 4x4cm $\rightarrow (0^{\circ} < \theta < 2^{\circ})$ 64 middle 8x8cm $\rightarrow (2^{\circ} < \theta < 3.3^{\circ})$ 84 large 16x16cm $\rightarrow (3.3^{\circ} < \theta < 7.2^{\circ})$

> Designed for di-electron spectroscopy, also suited for the charged hadron detection

Kinematics and phase space simulation

Kinematics - co-planarity

PID in HADES and Forward Wall

spectator momentum distribution

Deuteron in FWall time distribution

coplanarity Vs FW time hit2 - experiment

Coplanarity - Signal and Background estimation $d\pi^+\pi^-/np\pi^+\pi^-$

Di-baryon resonance d* – model from Mikhail Bashkanov (WASA)

pion invariant mass vs deuteron theta (I=0 channel in 4π)

pion invariant mass vs deuteron theta (I=1 channel in 4π)

Di-pion mass changes with total energy - 4π

Di-pion mass changes with total energy – HADES acceptance

Summary and Outlook

 $\begin{array}{l} d+p \rightarrow d\pi^{+}\pi^{-} + p_{spec} \\ d+p \rightarrow np\pi^{+}\pi^{-} + p_{spec} \end{array} \ \ (\mbox{background}) \end{array}$

• Full chain phase space simulation for the $d\pi^+\pi^-$ and $np\pi^+\pi^-$ channels to improve PID and estimate signal/ background ratio

- Acceptance and Efficiency matrices
- Experimental data corrected for efficiency simulation filtered by acceptance and smeared
- ABC effect and WASA di-baryon resonance model compared with HADES experimental data

To Do:

- Improvement of the signal extraction
- •Deuteron selection by missing mass method (pn $\rightarrow \pi^+\pi^- X$): extension to the "blind" area
- Application of the method of deuteron selection and coplanarity to e+e- analysis

The end

fw_theta_2:pip_theta