Electromagnetic Processes in PANDA

Manuel Zambrana

Institut für Kernphysik, University of Mainz / Helmholtz Institute Mainz

on behalf of the PANDA Mainz group:

Luigi Capozza, Bertalan Feher, Dmitry Khaneft, Frank Maas, María del Carmen Mora Espí, Cristina Morales, Oliver Noll, David Rodríguez, Roserio Valente, Felix Welzel, Iris Zimmermann, Manuel Zambrana

and the PANDA Orsay group:

Jerome Boucher, A. Dbeyssi, Thierry Hennino, Ronald Kunne, Dominique Marchand, Beatrice Ramstein, Saro Ong, Malgorzata Sudol, Egle Tomasi-Gustafsson, Jacques Van de Wiele

work supported by the Bundesministerium für Bildung und Forschung (BMBF), through the grant 05P12UMFP9

OUTLINE

- electromagnetic form factors in the timelike region
- electromagnetic probe opportunities with PANDA, Transition Distribution Amplitudes
- summary and conclusions

Electromagnetic structure of hadrons

- hadrons: particle states in an interacting QFT of quarks and gluons: QCD
- quarks: electric charge $\Rightarrow j^{\mu}(x)$ observable \Rightarrow electromagnetic structure

$$\langle \bar{N}(p') | q_u \bar{u} \gamma_\mu u + q_d \bar{d} \gamma_\mu d + \dots | N(p) \rangle =$$

$$\bar{u}(p') \Big\{ F_1(q^2) \gamma_\mu + F_2(q^2) \frac{1}{4M} [\hat{q}, \gamma_\mu] \Big\} u(p), \qquad \hat{q} \equiv q_\nu \gamma_\nu$$

$$G_E = F_1 + \tau F_2$$

$$G_M = F_1 + F_2$$

$$Pauli$$

 \rightarrow encode all hadron electromagnetic structure brought by strong interaction $\rightarrow G_E, G_M$ charge and magnetisation spatial distribution (Breit frame)

measurement of FF (via EM processes, subject to radiative corrections)
i) observation of hadron EM structure
ii) test of non-perturbative QCD predictions (lattice QCD, ChPT),
constraints for model building

Electromagnetic proton form factors

- same matrix element: highly explored in spacelike region, almost unknown in timelike
- early investigations in the fifties, still a hot topic in hadron physics: many open questions
 - \rightarrow charge radius of the proton
 - \rightarrow incompatibility of Rosenbluth and polarisation data in spacelike
 - \rightarrow structure of the unphysical region: resonance content, implications in dispersive analysis

Electromagnetic proton form factors

SPACELIKE $(q^2 < 0)$

many high precision measurements

TIMELIKE $(q^2 > 0)$

few low precision measurements

cross section (angular distribution)

Timelike EM form factor : $\bar{p}p \rightarrow e^+e^-$, cross section

6

Timelike EM form factor : $\bar{p}p \rightarrow e^+e^-$, pion background

• difficulty in $\bar{p}p \rightarrow e^+e^-$ reconstruction: suppression of $\bar{p}p \rightarrow \pi^+\pi^-$ background: $\sigma(\pi^+\pi^-)/\sigma(e^+e^-) \sim 10^6 \Rightarrow$ suppression factor of 10^8 needed for 1% pion pollution

\Rightarrow event generator developed in Mainz

http://panda-wiki.gsi.de/cgi-bin/view/PANDAMainz/EventGenerators(PANDA report)

The PANDA Experiment

• $\bar{p}p$ fixed target experiment at the FAIR facility (GSI, Darmstadt) 1.5 < P < 15 GeV (P : antiproton momentum), data taking programmed for 2018

- high performance: high luminosity $L = 2 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$, good tracking/PID
- wide physics program: hadron spectroscopy (up to c-sector, exotics), hadron structure (time-like form factors, TPD), non-perturbative dynamics (TDA, spin), hypernuclei, etc.

Particle identification capability in PANDA

 $\sigma(\pi^+\pi^-)/\sigma(e^+e^-) \sim 10^6 \Rightarrow$ suppression factor of 10⁸ for 1% pion pollution \Rightarrow PID crucial

poweful PID capabilities with PANDA *i*) individual detector PID: probability under e, μ, π, K, p hypothesis

ii) global PID: info from i) + standard likelihood

- energy loss dE/dx at MVD, central tracking spectrometer detector
- EMC: efficient and clean e identification with E/p, cluster shower shapes (Zernike moments, etc.)

PANDA Collab., "Physics Performance Report for PANDA", arXiv:0903.3905v1

a suppression factor $> 10^8$ is achieved \Rightarrow a pion pollution in signal sample < 1%

signal efficiency is about 40%

Signal reconstruction, cross section measurement, FF extraction

dσ/d(cosθ*) [fb]

20000

18000 16000

14000

- simulations with $L = 2 \text{ fb}^{-1}$, several s, $|G_E|/|G_M| = 0, 1, 3$
- signal corrected by efficiency ϵ_i
- measure cross section:

or ratio $|G_E|/|G_M|$

Electromagnetic proton form factor measurement

 \Rightarrow unprecedent precision in PANDA measurements : $50\% \rightarrow 3-5\%$ recent work:

- new simulations with PandaRoot framework on channel $\bar{p}p \rightarrow e^+e^-$ (D. Khaneft)
- extension to $\bar{p}p \rightarrow \mu^+\mu^-$ (I. Zimmermann)
- polarised target in PANDA (B. Feher)
- development of event generators (M. Zambrana)

Electromagnetic radiative corrections

J. Van de Wiele and S. Ong, Eur.Phys.J. A49 (2013) 18

- measured cross sections subject to radiative effects: correction to bring them to Born level
- so far, interference effects of initial state radiation (ISR) and final state radiation (FSR) were neglected
- complete $o(\alpha)$ corrections (real: ISR, FSR, virtual, interference) recently calculated

$\bar{p}p \rightarrow e^+e^-\pi^0$: form factors below threshold

• unphysical region $0 < q^2 < 4M^2$ is important:

contribution of resonances (e.g. vector mesons) has fundamental implications:

- \rightarrow dispersion relations
- ightarrow asymptotic behaviour of the form factors
- \rightarrow proton radius, etc.

 \Rightarrow but not accesible by process $ar{p}p
ightarrow e^+e^-$

ullet idea: consider $ar p p o \pi^0 \ \gamma^* o \pi^0 \ e^+ e^-$

A. Z. Dubnickova et al. Z. Phys. C 70, 473 (1996) Adamuscin et al., Phys. Review C 75, 045205 (2007)

part of the initial 4-mom transferred to π^0 $\Rightarrow 4m_e^2 < q^2 < q_{max}^2; \ q_{max}^2 = (\sqrt{s} - m_\pi)^2$

 \Rightarrow region $4m_e^2 < q^2 < 4M^2$ accesible

J. Boucher, PhD Thesis (2011)

• theory issues: model dependence, off-shell FF... best we have now

_∎ ເ

$\bar{p}p \rightarrow e^+e^-\pi^0$: results in the Regge framework

J. Guttmann and M. Vanderhaeghen, PL B 719 (2013) 136-142 cross section: $d\sigma/dt dq^2 d\Omega_{e^+e^-}$

lepton $d\Omega_{e^+e^-} = d(\cos_{e^+e^-})d\Phi_{e^+e^-}, \ \Phi_{e^+e^-} = \angle(\text{leptonic plane, hadronic plane})$ phase space

 $\Phi_{e^+e^-}$ modulation \Rightarrow access to FF phase difference through interference terms $G_E G_M$ (without polarised target)

model reproduces real photoproduction data $\bar{p}p \rightarrow \pi^0 \gamma$,

E760 Collab. (Fermilab), PR D 56 (1997) 2509

$\bar{p}p \rightarrow e^+e^-\pi^0$: Transition Distribution Amplitudes

- new analysis topic in Mainz PANDA group introduced to us by Bernard Pire
- $\bar{p}p \rightarrow e^+e^-\pi^0$ admits QCD collinear factorisation at high $M(e^+e^-)$ and low $p_T(\pi_0)$ in terms of Distribution Amplitudes (DAs) and Transition Distribution Amplitudes (TDAs)
 - \rightarrow non-perturbative objects (models)

J.P. Lansberg et al., PR D 76, 111502 (2007) J.P. Lansberg et al., PR D 86, 114033 (2012)

kinematics accesible by PANDA:

cross section measurement \Rightarrow test of QCD factorisation and access to TDAs

$\bar{p}p \rightarrow e^+e^-\pi^0$: simulations with TDAs cross sections

simulations done with p_T(π₀) = 0, cross section extrapolated up to | cos(θ_{π₀})| > 0.85
p̄p → π⁺π⁻π⁰ background assumed to be 10⁶ higher than p̄p → e⁺e⁻π⁰, with identical angular distributions ⇒ suppression factor of 10⁸ achieved

 \Rightarrow measurement at s = 5 GeV² and s = 10 GeV² feasible

Summary and conclusions

- electromagnetic nucleon form factors with PANDA: unprecedent precision (from 50% to 5 - 3%) $\bar{p}p \rightarrow e^+e^-$
- hadron cross sections 10^6 larger than signal: suppression factor of 10^8 achieved (\Rightarrow background pollution < 1%) due to PANDA PID capabilities and kinematical fit
- polarised target and/or beam in PANDA: access to form factors imaginary part
- active theory: model building for time-like form factors, radiative corrections (ISR, FSR, two photon exchange), Regge, TDAs physics
- PANDA Mainz group current activities:
 - ightarrow new simulations with PandaRoot framework on channel $ar{p}p
 ightarrow e^+e^-$ (D. Khaneft)
 - \rightarrow extension to $\bar{p}p \rightarrow \mu^+\mu^-$ (I. Zimmermann)
 - \rightarrow polarised target in PANDA (B. Feher)
 - \rightarrow simulations with TDAs cross sections (M.C. Mora Espí)
 - \rightarrow development of event generators (M. Zambrana)

rich nucleon structure program with PANDA,

exciting times for nucleon electromagnetic form factors

Backup Slides

$\bar{p}p \rightarrow e^+e^-$ with polarisation : single/double spin asymmetry

20

 $\bar{p}p \rightarrow e^+e^-$ with transversely polarized target \Rightarrow single/double spin asymmetry E. Tomasi-Gustafsson et al. Eur. Phys. J. A 24, 419-430 (2005)

 \Rightarrow access to form factors imaginary part

$\bar{p}p \rightarrow e^+e^-\pi^0$ with polarisation : single/double spin asymmetry

 $\bar{p}p \rightarrow e^+e^-\pi^0$ when target and/or beam polarized: single/double spin asymmetries G.I. Gakh et al., Physical Review C 86, 025204 (2012)

 \Rightarrow access to form factors imaginary part

transversely polarised target in PANDA

 $\mathrm{s}=5.5~\mathrm{GeV^2}$

black (solid) : $q^2 = 0.5 \text{ GeV}^2$ red (dashed) : $q^2 = 2 \text{ GeV}^2$ green (dotted) : $q^2 = 4 \text{ GeV}^2$

