Photon 2013

Charm and Beauty Photoproduction at HERA

Ian C. Brock University of Bonn

On behalf of the H1 and ZEUS Collaborations

20 May 2013

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Heavy flavour production at HERA

- Boson-gluon fusion (BGF) is main production mechanism
- Studies of production mechanism:
 - Test QCD (different hard scales, m_Q , p_T)
- Charm fragmentation fractions
- Excited charm mesons

Heavy flavour production at HERA

- HERA (*ep*):
 - p: 920 (820) GeV
 - e: 27.5 GeV
- $Q^2 = -q^2 = -(k-k')^2$
- $Q^2 < 1 \,\,{
 m GeV^2}$
 - Photoproduction
 - Quasi-real photon exchanged
 - No scattered electron in detector

Heavy flavour production at HERA

 x_{v} : fraction of photon energy entering the hard interaction

Heavy flavour decay

- Methods to tag HF:
 - Reconstruct D* (or other D mesons)
 - Tag semileptonic decay to e, μ
 - Use long *B,D* hadron lifetime
 - Jet properties
 - e.g. secondary vertex mass
- Different tags probe different kinematic regions

Theory

- QCD Leading Order + Parton Shower Monte Carlos
 - PYTHIA
 - HERWIG
 - CASCADE
 - RAPGAP (DIS)

- QCD NLO programs
 - Weighted events
 - Do not include parton shower
 - FMNR (GMVFNS)

 MC@NLO (finally) used for a few (H1) measurements

Usually compare NLO calculations with experiment by applying hadronic corrections from LO Monte Carlo

c production using D*

- HERA II data - Up to 93 pb⁻¹ (2006/7)
- Fast Track Trigger
- $p_{\tau}(D^*) > 1.8$ (2.1) GeV
- Inclusive and dijet analysis

DESY 11-248, Eur. Phys. J. C72 (2012) 1995

Heavy Flavour Photoproduction at HERA

"Golden" Decay of D*

Different MCs each describe different aspects better Measurement more precise than NLO predictions (missing higher orders estimated by scale variations)

Inclusive

1.8 ≤ p_(D*) < 2.5 GeV

. η(**D***)

d²ơ/dp_Tdŋ (D*)[nb/GeV]

25

20

0

d²o/dp_Tdŋ (D*)[nb/GeV] .0 .0 .0 .1 .2 .0 .0

-1

c production using D*

- Dijet correlations
- Compare with LO MC
- Compare with NLO
- MC@NLO a bit low

 x_{v} : fraction of photon energy entering the hard interaction

c production using D*

universität**bonn**

- Split into 2 x, regions
 Nobody's perfect ^(C)
 - Enhanced non-direct or direct production
- **H**1 MC@NLO dơ/d|∆φ| [nb/deg] ថ្ម Data **H1** Ŧ dơ/d|∆φ| [nb/deg] x_v<0.75 Data Data Н 10^{-3} **H1** • Рутніа MC@NLO CASCADE R^{norm} x_~<0.75 1.5 10⁻³ ••••<u>•</u>••••• 0.5 ш 2 1.5 СС 50 100 150 Ω x,,≥0.75 x,,≥0.75 |Δφ| **[deg]** 10^{-3} 10⁻³ 0.5 50 100 150 R^{norm} R^{norm} |Δφ| **[deg]** 100 150 50 50 100 150 Ō $|\Delta \phi|$ [deg] |Δφ| **[deg]** Non-direct Non-direct Direct Direct 10

Data

Charm fragmentation fractions

- HERA II data
 - 372 pb⁻¹

- Many charmed hadrons identified in ZEUS detector
- Fragmentation fractions consistent with those in DIS and as measured in e⁺e⁻ with similar precision
- Supports idea of universal heavy quark fragmentation

ZEUS-prel-12-003 (DIS 2012)

Excited charm mesons

- HERA II data (372 pb⁻¹)
- Combine identified D^{*}, D⁺ or D⁰ with extra pion (π_a)
- Study
 - $D_1(2420)^0 \rightarrow D^{*+}\pi^-$
 - D_2^* (2460)⁰ → $D^{*+}π^-$
 - D_2^* (2460)⁰ → $D^+\pi^-$
 - $\ D_{_1}(2420)^+ \to D^{*0}\pi^+$
 - $D_2^{\ *}(2460)^+ \to D^{*0}\pi^+$
 - $D_2^{\ *}(2460)^+ \to D^0 \pi^+$

- Trigger on D mesons, but also allow other triggers
- PhP(80%) + DIS(20%)
- Use secondary vertices for D⁰ and D⁺
- Several cuts applied to reduce backgrounds
- Important to also model feed-down correctly

DESY 12-144, Nucl. Phys. B 866 (2013) 229

Excited charm mesons

ZEUS

ZEUS

Masses and widths consistent with BABAR, PDG Fragmentation fractions consistent with each other and e^+e^- results

Excited charm mesons

 Measure D₁⁰ helicity parameter

$$\frac{dN}{d\cos\alpha} \propto 1 + h\cos^2\alpha$$

- α is angle between π_a and π_s momenta in D^{*+} rest frame
- Split into 4 helicity intervals
- Measurement consistent with D_1^0 h=+3theoretical D_2^{*0} h=-1expectations

— simultaneous fit ---- background

20/05/13

b & c in photoproduction using leptons

- ZEUS & H1: *b* production with muons
 - DESY 08-210, JHEP04 (2009) 133 (ZEUS)
 - DESY 05-004, Eur. Phys. J C41 (2005) 453 (H1)
- With improved resolution and/or more variables can measure both b and c cross-sections
- First measurement made by ZEUS using electrons
 - DESY 08-056, Phys. Rev. D 78 (2008) 072001
- Recent measurement from H1 using muons
 DESY 12-059, Eur. Phys. J. C72 (2012) 2047

b & c in photoproduction using muons

- HERA II data
 - 179 pb⁻¹ (2006/7)
- Dijet photoproduction events
 - $p_{\rm T}^{\rm jet} > 7(6) {\rm ~GeV}$
- Semileptonic decays to muons
 - $p_{T}^{\mu} > 2.5 \text{ GeV}$
- Impact parameter + p_{T}^{rel} to separate *b* and *c*

DESY 12-059, Eur. Phys. J. C72 (2012) 2047

b & c in photoproduction using muons

b & c in photoproduction using muons

20/05/13

Heavy Flavour Photoproduction at HERA

18 universität**bonn**

b & c in photoproduction inclusive analysis

- HERA II data
 - 133 pb⁻¹ (2005)
- Dijet photoproduction events – $p_{T}^{jet} > 7(6)$ GeV
- Secondary vertex and vertex mass to separate b,c jets from each other and from light-quark jets
- Keep analysis inclusive
 - High statistics
 - Less dependence on branching fractions

DESY 11-067, Eur. Phys. J. C71, 1659 (2011)

Mirrored significance

- Fit distribution to 3 contributions
- Use unsubtracted distribution to constrain overall normalisation

b & c cross-sections

- Compare measured cross-sections with scaled MC and NLO QCD predictions
- Good agreement
- Large theory uncertainty!
 - Small dependence on proton PDF

ZEUS

dσ_b/dη^{jet} (pb)

p_T^{c-jet} comparison

ZEUS

- Reasonable agreement with previous ZEUS measurements
- Good agreement with NLO QCD predictions

- HERA I (114 pb⁻¹)
- Double tag events
 - Low background ©
 - Larger kinematic range ©
 - Low statistics ②
- Two identified muons
- PhP + DIS
 - $E_{T} > 8 \text{ GeV}$
- Measure bb correlations
 - Probe NLO effects

DESY 08-129, JHEP02 (2009) 032

- $\Delta \phi$ between muons from different quarks
- Correlations reasonably well described

- HERA II
 - 48 pb⁻¹ (2007)
- Use 2 identified electrons
 - $p_{T}^{e} > 1 \text{ GeV}$
 - Use neural network to identify electrons
 - Validate with J/ψ and K_s^{0} decays
- Aim for very low p_{T}^{b}

DESY 12-072, Eur. Phys. J. C72 (2012) 2148

Separate into categories

■ beauty ⊗ charm ⊗ J/ψ ⊘ uds

- Clear J/ψ region
- Charm mostly in $q_{e1}q_{e2}\Delta \phi < 0$
- Beauty at higher masses

- Use thrust axis to divide event into hemispheres and calculate $< p_T^b >$
- Extract cross-section and compare with NLO prediction
- Good agreement, but data higher than prediction at small $p_{T}^{\ b}$

Summary of b photoproduction

- Good agreement between ZEUS and H1 measurements
 - Large p_T^b range
 covered
- Good agreement with NLO QCD predictions
 - Better agreement with scale $\mu^2 = (m^2 + p_T^2)/4$ than $(m^2 + p_T^2)$

Conclusions

- b and c quark photoproduction measured in a variety of ways at HERA
- Data is usually more precise than the predictions
- General agreement between data and both LO MC and NLO calculations, although some shape differences are seen

Backup

H1 DESY 11-248 D*

- Inclusive
 - $p_{T}(D^*) > 1.8 \text{ GeV}$
 - Cut on dE/dx for K

- Dijet
 - $p_{T}(jet) > 3.5 \text{ GeV}$
 - $p_{T}(D^{*}) > 2.1 \text{ GeV}$

Kinematic range

inclusive D^* meson and D^* -tagged dijet production			
Photon virtuality	$Q^2 < 2 \mathrm{GeV^2}$		
γp centre-of-mass energy	$100 < W_{\gamma p} < 285 \text{ GeV}$		
Pseudorapidity of $D^{*\pm}$	$ \eta(D^*) < 1.5$		
inclusive D^* meson production			
Transverse momentum of $D^{*\pm}$	$p_T(D^*) > 1.8 \text{ GeV}$		
D^* -tagged dijet production			
Transverse momentum of $D^{*\pm}$	$p_T(D^*) > 2.1 \text{ GeV}$		
Transverse momentum of D^* jet	$p_T(D^* \text{ jet}) > 3.5 \text{ GeV}$		
Pseudorapidity of D^* jet	$ \eta(D^* \text{ jet}) < 1.5$		
Transverse momentum of other jet	$p_T(\text{other jet}) > 3.5 \text{ GeV}$		
Pseudorapidity of other jet	$-1.5 < \eta$ (other jet) < 2.9		
Dijet invariant mass M_{ii}	$M_{ii} > 6 \text{ GeV}$		

Table 3: Definition of the kinematic range of the measurements.

Systematic uncertainties

Uncertainty source	D^*	D*-tagged dijet	
Uncorrelated uncertainties			
Trigger efficiency	7.5%	3.1%	
Signal extraction	1.5%	1.5%	
D^0 meson mass cut	2.0%	2.0%	
Reflections	1.0%	1.0%	
Background from deep-inelastic scattering	1.0%	1.0%	
dE/dx cut	0.5%	_	
Hadronic energy scale	0.6%	2.0%	
Model	2.0%	1.5%	
Fragmentation	2.5%	2.0%	
Track finding efficiency (half)	2.9%	2.9%	
Total uncorrelated	9.2%	6.0%	
Normalisation uncertainties			
Track finding efficiency (half)	2.9%	2.9%	
Luminosity	5.0%	5.0%	
Branching ratio	1.5%	1.5%	
Total normalisation	6.0%	6.0%	
Total	10.9%	8.5%	

Table 4: Summary of all sources of systematic uncertainties and their effect on the total D^* and the D^* -tagged dijet production cross section with the breakdown into sources leading to bin-to-bin uncorrelated uncertainties and sources leading to normalisation uncertainties.

ZEUS DESY 12-144 Excited charm

Decay modes

- $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^- \pi^+) \pi^+$
- $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^- \pi^+ \pi^- \pi^+) \pi^+$
- D⁺ \rightarrow K⁻ $\pi^+\pi^+$
- $D^0 \rightarrow K^-\pi^+$

$D_1(2420)^{\circ}$ and $D_2^*(2460)^{\circ}$

D*+π⁻

- $p_T(\pi_a) > 0.15 \text{ GeV};$
- $\eta(\pi_a) < 1.1$;
- $p_T(D^{*+}\pi_a)/E_{\perp}^{\theta>10^\circ} > 0.25 \ (0.30)$ for the $D^0 \to K\pi \ (D^0 \to K\pi\pi\pi)$ channel;
- $\cos \theta^*(D^{*+}) < 0.9$, where $\theta^*(D^{*+})$ is the angle between the D^{*+} in the $D^{*+}\pi_a$ rest frame and the $D^{*+}\pi_a$ line of flight in the laboratory frame;
- the cut $l_{\pi} > 0.01$ was applied for π_a .

D⁺π⁻ (D₂^{*}(2460)⁰)

- $p_T(\pi_a) > 0.3 \text{ GeV};$
- $\eta(\pi_a) < 1.5;$
- $p_T(D^+\pi_a)/E_{\perp}^{\theta>10^\circ} > 0.35;$
- $\cos \theta^*(D^+) < 0.8$, where $\theta^*(D^+)$ is the angle between the D^+ in the $D^+\pi_a$ rest frame and the $D^+\pi_a$ line of flight in the laboratory frame;
- the cut $l_{\pi} > 0.01$ was applied for π_a .

$D_1(2420)^+$ and $D_2^*(2460)^+$

- $p_T(\pi_a) > 0.35$ GeV;
- $\eta(\pi_a) < 1.6;$
- $p_T(D^0\pi_a)/E_{\perp}^{\theta>10^\circ}>0.3;$
- $\cos \theta^*(D^0) < 0.85$, where $\theta^*(D^0)$ is the angle between the D^0 in the $D^0\pi_a$ rest frame and the $D^0\pi_a$ line of flight in the laboratory frame;
- the cut $l_{\pi} > 0.01$ was applied for π_a .

ZEUS DESY 08-210 b with muons

b in photoproduction using muons

- HERA II data
 - 126 pb⁻¹ (2005)
- Photoproduction
- Dijet events – $p_{T}^{jet} > 7(6)$ GeV
- Semileptonic decays to muons - $(p_{T}^{\mu} > 2.5 (1.5) \text{ GeV})$
- Include lifetime information

b in photoproduction using muons

 Impact parameter

ZEUS

b in photoproduction using muons

ZEUS DESY 08-056 b & c with electrons

b & c in photoproduction using electrons

 $b \rightarrow e X$

 $c \to e \; X$

iet

- HERA I data
 - 120 pb⁻¹ (1996-2000) Bkg
- Dijet photoproduction events $- E_T^{\text{jet}} > 7(6) \text{ GeV}$
- Semileptonic decays to electrons ($p_{T}^{e} > 0.9 \text{ GeV}$)
- Look for more variables to determine b and c quark fractions separately

DESY 08-056, Phys. Rev. D 78 (2008) 072001

Heavy Flavour Photoproduction at HERA 44 4 universität**bonn**

b & c in photoproduction using electrons

- Use a likelihood ratio method to separate b,c and light flavour
- Visible cross-section

ZEUS

b & c in photoproduction using electrons

- LO Monte Carlo scale factors:
 - b x 1.75
 - c x 1.28
- NLO absolute predictions

H1 DESY 12-059 b & c with muons

Cuts & Calculations

- Cuts
- -1.5 < η_{jet} < 2.5
- $Q^2 < 2.5 \text{ GeV}^2$
- 0.2 < *y* < 0.8
- $p_{\rm t}^{\ \mu}$ > 2.5 GeV
- -1.3 < η^μ < 1.5

- MC@NLO
 - $-m_{b}^{} = 4.75 \text{ GeV}$
 - $-m_{c} = 1.5 \text{ GeV}$
 - $-\mu_{\rm R} = \sqrt{(m_Q^2 + p_T^2)}$
 - $-\mu_{F}=2\mu_{R}$

Systematic uncertainties

Systematic error source	Beauty $\Delta\sigma/\sigma$ [%]	Charm $\Delta \sigma / \sigma [\%]$
Trigger efficiency	4	4
Muon identification	4	4
Track finding efficiency	3	3
Luminosity	4	4
δ Resolution	3	2
Jet axis	4	2
Hadronic energy scale	3	5
Physics model	3	1
Fragmentation	3	4
Fake muon background	1	1
Total	10.5	10.4

Table 3: Summary of the systematic uncertainties of the beauty and charm cross sections.

Cross-sections

	$\sigma_{\rm vis}(ep \to eb\bar{b}X \to ejj\mu X')$ [pb]	$\sigma_{\rm vis}(ep \to ec\bar{c}X \to ejj\mu X')$ [pb]
H1 Data	$43.3 \pm 2.1 \text{ (stat.)} \pm 4.5 \text{ (sys.)}$	$81.3 \pm 4.3 \text{ (stat.)} \pm 8.5 \text{ (sys.)}$
Ρυτηιά	35.3	94.3
CASCADE	29.0	76.8
HERWIG	20.6	58.5
MC@NLO	$33.4_{-9.2}^{+7.1}$	$58.6^{+29.5}_{-11.2}$

Table 4: Total visible measured beauty and charm cross sections along with their statistical and systematic errors. The total predictions from PYTHIA, CASCADE, HERWIG, and MC@NLO are also shown. The MC@NLO predictions are given with their theoretical uncertainties.

ZEUS DESY 11-067 b & c inclusive

b & c in photoproduction inclusive analysis

- Data and MC samples
 - 2005 e⁻p data 133 pb⁻¹
 - Monte Carlo (MC):
 - b, c samples (high statistics)
 - PYTHIA with CTEQ5L + GRV-G LO
 - $m_b = 4.75 \text{ GeV}, m_c = 1.5 \text{ GeV}$
 - Generate direct, resolved and excitation samples
 - Light flavour (lf) sample (1x data)
 - PYTHIA with CTEQ4L + GRV-G LO

Event selection

- No scattered electron
- 0.2 < y < 0.8
- Two highest p_{T} jets

ZEUS

Control distributions

- Jets with associated secondary vertices used for cross-section
 - $-1.6 < \eta < 1.4$
 - |S| > 3
 - 70 433 jets remain

Secondary vertex

20/05/13

Significance distributions

- Use negative significance to check and tune MC resolution
- b, c, lf dominate in different mass bins and significance regions
- Subtract negative from positive significance to (almost) remove light flavour contribution

b-enriched sample

- As a cross-check, enrich b:
 - $-m_{vtx} > 2.0 \text{ GeV}$
 - |S| > 8
- Pure sample
 - >90%
- Good agreement with Monte Carlo

c-enriched sample

- As a cross-check, enrich c:
 - 0.8 < m_{vtx} < 2.0 GeV
- Sample purity
 ~70%
- Good agreement with Monte Carlo
 - Ongoing studies to improve m_{vtx}

Systematic uncertainties

Uncertainties for total cross-section

Parameter	Uncertainty (%)	
	b	С
Trigger efficiency	+4.2/-3.9	+4.5/-3.2
Jet energy scale	±0.6	±4.3
Tracking/Decay length	+6.0/-1.0	+1.2/-0.7
Jet reweighting	-5.6	-1.5
Charm mesons	-1.8	+0.6/-2.2
Fragmentation	+1.8/-2.1	+1.2/-1.3
Luminosity	±1.8	±1.8
Total	+7.8/-7.7	+6.7/-7.0

No single dominant contribution

NLO QCD predictions

- Use FMNR program for predictions
 - $-m_{b} = 4.75 \text{ GeV}, m_{c} = 1.5 \text{ GeV}$
 - $-\mu_{\rm F} = \mu_{\rm R} = 0.5 \ \sqrt{(m_{\rm Q}^2 + p_{\rm T}^2)}$
- Vary masses and scales (by a factor of 2) to get theory uncertainty
- Dominant uncertainty comes from scale variation

ZEUS DESY 08-129 b with dimuons

H1 DESY 12-072 b with dielectrons

Selection cuts

Overview of the Selection Cuts	
Trigger selection	
track multiplicity cuts	
• 1 or 2 online identified electrons	
Offline electron selection	
• 2 electron candidates with:	
$-D_{\rm ele} > 0.825, R_{ m E,cone} < 350\%$	
$-P_T(e) > 1 \text{GeV}, 20^\circ < \vartheta(e) < 140^\circ$	
- verification of the L3 $P_T(e)$ -thresholds 100 MeV above the $P_T(e)$ -threshold of the	
respective subtrigger which recorded the event (see table 1 and text)	
Background rejection and further cuts	
Rejection of non ep-background:	
• good vertex, timing vetoes	
Rejection of DIS events:	
 no identified scattered beam positron 	
• $0.05 < y_{\rm h} < 0.65$	
Rejection of photon conversions and Dalitz decays:	
• $m_{e1,e2} > 1.2 \text{GeV}$	
• no converted photon	
• $dca_e < 0.2 cm$	

Table 2: Overview of the online and offline selection cuts. More details on the selection procedure can be found in [47].

Separate into categories

20/05/13