An Overview of the Anomalous Soft Photons in Hadron Production

Cheuk-Yin Wong Oak Ridge National Laboratory

- 1. Introduction
 - -- Why do we want to study soft photons in hadron production?
 - -- What are the anomalous soft photons?
- 2. Many models to explain the anomalous soft photon phenomenon
- 3 Peculiar properties in anomalous soft photon production
- 4. Proposed quantum field theory explanation
 - -- Bound QCD & QED states in the flux-tube environment
 - -- Production of these bound states in the flux-tube environment
 - -- Evolution of these flux tube-states
- 5 Conclusions

Why study soft photon in a hadron production?

Soft photons in hadron production involves QED, QCD, & possible QCD effects in QED processes

Conventional theory of QED bremsstrahlung

Consider $p_1 + p_2 \rightarrow p_3 + p_4 + p_5 + ... + p_N + k$ The spectrum of bremsstrhlung soft photons can be obtained from exclusive measurements of the momenta of all initial and final charged particles $\frac{dN_{\gamma}}{d^{3}k} = \frac{\alpha}{2\pi k_{0}} \int d^{3}p_{3}d^{3}p_{4}...d^{3}p_{N} \sum_{i, i=1}^{N+2} \frac{\eta_{i}\eta_{j}e_{i}e_{j}(p_{i} \cdot p_{j})}{4(p_{i} \cdot k)(p_{j} \cdot k)} \frac{dN_{\text{hadron}}}{d^{3}p_{3}d^{3}p_{4}...d^{3}p_{N}}$ $\eta_i = 1$ for a final particle, -1 for an initial particle

Consider $p_1 + p_2 \rightarrow p_3 + p_4 + k$ $M(p_1p_2; p_3p_4k) = M_0(p_1p_2; p_3p_4) \left[\frac{e_1p_1 \cdot \varepsilon}{(p_1 - k)^2} + \frac{e_3p_3 \cdot \varepsilon}{(p_2 + k)^2} \right]$ $= M_0(p_1p_2; p_3p_4) \left[\frac{-e_1p_1 \cdot \varepsilon}{2p_1 \cdot k} + \frac{e_3p_3 \cdot \varepsilon}{2p_2 \cdot k} \right]$ $= M_0(p_1p_2; p_3p_4) \left[\sum_{i=1}^{\text{all charged particles}} \frac{\eta_i e_i p_i \cdot \varepsilon}{2n \cdot k} \right]$

Low Theorem M₀ $p_{\overline{2}}$

3

n

 $\eta_i = +1$ for a final particle, $\eta = -1$ for an initial particle This can be generalized to

$$M(p_{1}p_{2}; p_{3}p_{4}...p_{N}k) = M_{0}(p_{1}p_{2}; p_{3}p_{4}...p_{N}) \left[\sum_{i}^{N+2} \frac{\eta_{i}e_{i}p_{i} \cdot \varepsilon}{2p_{i} \cdot k}\right]$$

$$|M(p_{1}p_{2}; p_{3}p_{4}...p_{N}k)|^{2} = |M_{0}(p_{1}p_{2}; p_{3}p_{4}...p_{N})|^{2} \left[\sum_{i}^{N+2} \frac{\eta_{i}e_{i}p_{i} \cdot \varepsilon}{2p_{i} \cdot k}\right]^{2}$$

$$(p_{i} \cdot \varepsilon)(p_{j} \cdot \varepsilon) = -(p_{i} \cdot p_{j})$$

$$|M(p_{1}p_{2}; p_{3}p_{4}...p_{N}k)|^{2} = |M_{0}(p_{1}p_{2}; p_{3}p_{4}..p_{N})|^{2} \left[\sum_{i,j}^{N+2} \frac{\eta_{i}\eta_{j}e_{i}e_{j}(p_{i} \cdot p_{j})}{4(p_{i} \cdot k)(p_{j} \cdot k)}\right]$$

$$\frac{dN_{\gamma}}{d^{3}k} = \frac{\alpha}{2\pi k_{0}} \int d^{3}p_{3}d^{3}p_{4}...d^{3}p_{N} \sum_{i,j=1}^{N+2} \frac{\eta_{i}\eta_{j}e_{i}e_{j}(p_{i} \cdot p_{j})}{4(p_{i} \cdot k)(p_{j} \cdot k)} \frac{dN_{hadron}}{d^{3}p_{3}d^{3}p_{4}...d^{3}p_{N}}$$

$$\eta_{i} = 1 \text{ for a final particle, } \eta = -1 \text{ for an initial particle}$$

Gribov's question: Where to find soft photons?

Consider

$$p_{1} + p_{2} \rightarrow p_{3} + p_{4} + p_{5} + \dots + p_{N} + k$$

$$\frac{dN_{\gamma}}{d^{3}k} = \frac{\alpha}{2\pi k_{0}} \int d^{3}p_{3}d^{3}p_{4} \dots d^{3}p_{N} \sum_{i, j=1}^{N+2} \frac{\eta_{i}\eta_{j}e_{i}e_{j}(p_{i} \cdot p_{j})}{4(p_{i} \cdot k)(p_{j} \cdot k)} \frac{dN_{\text{hadron}}}{d^{3}p_{3}d^{3}p_{4} \dots d^{3}p_{N}}$$

$$\eta_{i} = 1 \text{ for a final particle,} \quad -1 \text{ for an initial particle}$$
Contributions are large when

$$\Theta^{2}$$

$$p_i \cdot k = p_{i0}k(1 - \cos\theta) = p_{i0}k\frac{\theta}{2}$$
$$= p_{i0}k_T\frac{\theta}{2} \text{ is very small.}$$

So, experimental measurements have been focusing on the region of small k_T , and small θ .

(Table compiled by V. Perepelitsa)

Experiment	Collision Energy	Photon pT	Photon/Brems Ratio
π ⁺ p, SLAC, BC (1979)	10.5 GeV/c	Рт < 20 MeV/c	1.25 ± 0.25
K ⁺ p, CERN WA27,BEBC(1984)	70 GeV/c	Рт < 60 MeV/c	4.0 ± 0.8
K ⁺ p, CERN NA22, EHS (1993)	250 GeV/c	PT < 40 MeV/c	6.4 ± 1.6
π ⁺ p, CERN NA22,EHS (1997)	250 GeV/c	Рт < 40 MeV/c	6.9 ± 1.3
π ⁻ p , CERN WA83,OMEGA(1997)	280 GeV/c	Рт < 10 MeV/c	7.9 ± 1.4
π ⁻ p , CERN WA91,OMEGA(2002)	280 GeV/c	Рт < 20 MeV/c	5.3 ± 0.9
рр, CERN WA102,OMEGA(2002)	450 GeV/c	Рт < 20 MeV/c	4.1 ± 0.8
e+e-→hadrons CERN DELPHI(2010) with hadron production	~91 GeV (CM)	Рт < 60 MeV/c	~4.0
e+e- →µ+µ- CERN DELPHI(2008) with no hadron production	~91 GeV (CM)	Рт < 60 MeV/c	~1.0

•Anomalous soft photons are low- p_T photons (p_T <60 MeV).

•They are in excess of what is expected from EM bremsstrahlung.

5

•They occur only when hadrons are produced.

WA102 data for pp collisons at 450 GeV(fixed target)

A. Belogianni et al. / Physics Letters B 548 (2002) 129-139

DELPHI "Zero" experiment, using a distant jet as axis

Models of Anomalous Photons (I)

<u>Van Hove</u> (Ann.Phys.192,66(1989)
 Van Hove & Lichard (PLB245,605(1990)

Partons at end of virtuality evolution form a glob of cold quark-gluon system of low temperature of $T\sim 10 - 30$ MeV.

Soft photons may be produced by $q + \overline{q} \rightarrow \gamma + g$

$$g + q \rightarrow \gamma + q$$

Models of Anomalous Photons (II)

• <u>Barshay</u> (PLB227,279(1989))

pions propagate in pion condensate and emit soft photons during the propagation. Rate of soft photon emission depends on the square of pion multiplicity

• <u>Shuryak (</u>PLB231,175 (1989))

Soft photons are produced by pions reflecting from a boundary under random collisions. Hard reflections lead to no effect, but soft pion collisions on wall leads to large enhancement in soft photon yield.

Models of Anomalous Photons (III)

<u>Czyz & Florkowski (</u>ZFPC61,171(1994))

Soft photons are produced by classical bremsstrahlung, with parton trajectories following string breaking in a string fragmentation.

Photon emissions along the flux tube agree with the Low limit.

Photon emissions perpendicular to the flux tube are enhanced over the Low limit.

Models of Anomalous Photons (IV)

• <u>Nachtmann</u> et al (ZFPC67,143 (1995))

Soft photons produced by synchrotron radiation from quarks in the stochastic QCD vacuum.

• Hatta and Ueda (Nucl.Phys. B837 (2010) 22-39)

Soft photons are produced in ADS/CFT supersymmetric Yang-Mills theory.

Properties of anomalous soft photons:

Anomalous soft photons, in excess of what is expected from EM bremsstrahlung, have been observed in K⁺p, π ⁺p, π ⁻p, pp, and e⁺e⁻ collisions at high energies.

- 1.They are produced only in association with hadron production. They are not produced in $e^+ + e^- \rightarrow \mu^+ + \mu^-$.
- 2.Total anomalous soft photon yield is proportional to total hadron yield.
- 3. Transverse momentum of anomalous soft photons $p_T \sim 2$ to 50 MeV.
- 4. Anomalous soft photon yield increase faster with increasing neutral hadron multiplicity N_{neu} than with charged hadron multiplicity N_{ch} .

e+e- annihilation at Z0 decay (~91 GeV)

Anomalous soft photon yield is proportional to the particle (hadron) multiplicity

Anomalous soft photons come in groups

Quantum field theory of meson and photon production

- Mesons are bound states of vacuum oscillations in a flux tube
- When a quark pulls away from an antiquark at high energies, the vacuum is polarized
- Polarization causes the color charges of the quarks in the vacuum to oscillate
- Oscillations of the color charges of the quarks in the vacuum produces mesons
- Oscillations of the color charges of the quarks in the vacuum are accompanied by the oscillations of the electric charges of quarks in the vacuum
- Oscillations of the electric charges of the quarks in the vacuum produces photons in the flux tube environment

$-0 \bullet 0 \bullet 0 \bullet 0 \bullet 0 \bullet 0 \bullet 0 \bullet -$

Color charges oscillations \rightarrow meson production Electric charges oscillations \rightarrow photon production

Such a model can explain:

Photon production accompanies by meson production
 Photon yield is proportional to meson yield

We need to explain the other two features of the anomalous soft photon phenomenon:

3.Why $p_T \sim 10-50 \text{ MeV}$?

4.Why anomalous soft photon yield increase much faster with increasing neutral particle multiplicity than with charged multiplicity?

<u>Schwinger QED2 quantum field theory model</u> is a complete model of particle production

- It shows how the produced particles with a mass $m = e/\sqrt{\pi}$ are stable quanta of the underlying QED2 quantum field
- It shows how particles are produced, when a quark pulls away from an antiquark at high energies

Schwinger QED2 quantum field theory

Quantum electrodynamics in 1+1 dimensions with massless fermions

$$\gamma^{\mu}(\mathcal{P}_{\mu} - \mathcal{e}\mathcal{A}_{\mu})\psi = 0$$
$$\partial_{\mu}\mathcal{F}^{\mu\nu} = \partial_{\mu}(\partial^{\mu}\mathcal{A}^{\nu} - \partial^{\nu}\mathcal{A}^{\mu}) = \mathcal{e} \ j^{\nu} = \mathcal{e}\overline{\psi}\gamma^{\nu}\psi$$

A small disturbance in $A^{\nu} \Rightarrow$ A small disturbance in j^{ν} \Rightarrow A small disturbance in A^{ν}

Therefore, j^{ν} is a self - consistent function of A^{ν} .

A gauge invariant relation between j^{ν} and A^{ν} is

$$\boldsymbol{j}^{\boldsymbol{v}} = \frac{\boldsymbol{e}}{\sqrt{\pi}} \left(\boldsymbol{A}^{\boldsymbol{v}} - \partial^{\boldsymbol{v}} \frac{1}{\partial_{\lambda} \partial^{\lambda}} \partial_{\mu} \partial^{\mu} \boldsymbol{A}^{\boldsymbol{v}} \right)$$

When we substitute this into the Maxwell equation, we get

$$\partial_{\mu}\partial^{\mu}A^{\nu} + \frac{e^2}{\pi}A^{\nu} = 0$$

This is the Klein - Gordon equation for a boson with a mass

$$m = \frac{e}{\sqrt{\pi}}$$

Flux tube environemnt is peculiar

When a q pulls away from a \overline{q} at high energies,

QCD4×QED4 can be approximated by QCD2×QED2, with the formation of a flux tube between the q and the \overline{q} . The flux tube can be idealized as a string between the q and the \overline{q} . The coupling constants in the 4D and 2D theories are related by

$$g_{2D}^2 = \frac{g_{4D}^2}{\pi R_T^2}, \qquad R_T = \text{flux tube radius.}$$

We need to study the bound states and their production in QCD2×QED2.

C. Y. Wong, Phys. Rev.C81,064903(2010)

Bound states in QCD2XQED2 (1)

1. QCD2×QED2 Lagrangian density is

C. Y. Wong, Phys. Rev.C81,064903(2010)

$$\mathcal{L} = \overline{\psi} [\gamma^{\mu} (i\partial_{\mu} + gA_{\mu}) - m_{\tau}] \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

 $QCD2 \times QED2$ can be studied with the U(3) group which is the product of U(1)×SU(3).

2. The U(3) group has 9 generators :

$$t^{0} = \frac{1}{\sqrt{6}} \begin{pmatrix} 100\\010\\001 \end{pmatrix}, \qquad t^{1}, t^{2}, t^{3}, \dots, t^{8}, \qquad \text{tr} \left\{ t^{\alpha} t^{\beta} \right\} = \frac{\delta^{\alpha\beta}}{2}$$

$$\underbrace{U(1) \text{ generator}}_{QED} \qquad \underbrace{SU(3) \text{ generators}}_{QCD}$$

$$(gA_{\mu}\psi)^{b} = \sum_{f=u,d} \sum_{c=1,2,3} \sum_{a=0}^{8} g_{f}^{a} A_{\mu}^{a} (t^{a})^{bc} \psi_{f}^{c}$$

3. The different coupling constants \mathcal{G}_{f}^{a} depend on the generator and on the flavor

$$g_{u}^{0} = -Q_{u}e_{QED2} \quad Q_{u} = \frac{2}{3}$$

$$g_{d}^{0} = -Q_{d}e_{QED2} \quad Q_{d} = -\frac{1}{3}$$

$$g_{u}^{(1,2,3,...,8)} = g_{d}^{(1,2,3,...,8)} = g_{QCD2} \quad QCD$$

Bound states in QCD2XQED2 (2)

Bound state masses can be obtained by non - Abelian bosonization. Bosonization should be carried out in such a way to give stable bosons. We bosonize an element U_f (flavor f) of the U(3) group by φ_f^0 and φ_f^1

$$U_f = \exp \left\{ i \sqrt{2\pi} \sum_{a=0}^{1} \varphi_f^a t^a \right\}$$

We obtain the boson hamiltonian for φ_f^0 and φ_f^1 ,

$$2\mathcal{H} = N \sum_{a=0}^{1} \left\{ \sum_{f=u,d} \left[\frac{1}{2} \left(\prod_{f}^{a} \right)^{2} + \frac{1}{2} \left(\partial_{1} \varphi_{f}^{a} \right)^{2} \right] + \frac{1}{2\pi} \left[\sum_{f=u,d} g_{f}^{a} \varphi_{f}^{a} \right]^{2} \right\} + V_{m_{T}}$$

We construct isospin I states with $(I_3 = 0)$,

$$\varphi_{I}^{a} = \frac{1}{\sqrt{2}} \left[\varphi_{u}^{a} + (-1)^{I} \varphi_{d}^{a} \right] \quad \text{and} \quad \Pi_{I}^{a} = \frac{1}{\sqrt{2}} \left[\Pi_{u}^{a} + (-1)^{I} \Pi_{d}^{a} \right]$$

Then,
$$2\mathcal{H} = N \sum_{a=0}^{1} \left\{ \sum_{I=0,1} \left[\frac{1}{2} \left(\Pi_{I}^{a} \right)^{2} + \frac{1}{2} \left(\partial_{1} \varphi_{I}^{a} \right)^{2} \right] + \frac{1}{2} \left[\sum_{I=0,1} \frac{g_{u}^{a} + (-1)^{I} g_{d}^{a}}{\sqrt{2}\pi} \varphi_{I}^{a} \right]^{2} \right\} + V_{m_{T}}$$

Meson and photon masses depend on isospin

Isospin is a good quantum number in QCD2 isoscalar meson -- η^0 (*I*=0, *I*₃=0) isovector mesons -- π^+ , π^0 , π^- (*I*=1, *I*₃=1,0,-1)

Isospin is not a good quantum number in QED2 isoscalar photon (I=0, $I_3=0$) isovector photon (I=1, $I_3=0$) isovector QED (I=1, $I_3=\pm 1$) states unlikely to be stable <u>Meson and photon masses for $I_3 = 0$ states</u>

$$(M_I^a)^2 = \left[\frac{g_u^a + (-1)^I g_d^a}{\sqrt{2\pi}}\right]^2 + \left(\frac{1}{3} \text{ for QCD2}\right) e^{\gamma} m_T \mu$$

$$\gamma$$
 = the Euler constant = 0.5772

 $m_T = \text{quark transverse mass} \approx 1/R_T \approx 440 \text{ MeV},$

$$\mu$$
 = normal - ordering mass scale (interaction - depedent)

$$\begin{cases} \mu(QCD) \approx \Lambda_{QCD} \approx m_T \approx 440 \text{ MeV} \\ \mu(QED) \approx \text{ current quark rest mass} \approx O(1 \text{ MeV}) \end{cases}$$

Meson and photon masses for $I_3=0$

QCD2 meson spectrum

Evolution of a flux-tube QCD2, QED2 state

Inside the tube, a bound QCD2 or QED2 state exists with a mass M, obeying

 $E^2 = p_z^2 + M^2$

Outside the tube, the state come on the mass shell

with a mass m, obeying

$$E^2 = p_z^2 + p_T^2 + m^2$$

Energy and p_z preservation imply that after flux tube fragments,

$$p_T^2 + m^2 = M^2$$

For hadrons, hadron transverse mass can be identified with M

$$m_{T}(hadron) = M(QCD2)$$

For soft photons, m=0, and

$$p_T^2 = M^2$$
 pT(soft photon)=M(QED2)

Soft photon p_T can be identified with QED2 mass M.

Quantum field theory of particle production in QED2

Casher,Kogut,Susskind,Phy.Rev.D10,732('74) Bjorken,Phy.Rev.D27,140 ('83) Wong, Phys. Rev. C80, 054917 ('09)

For a quark pulling away from an antiquark at infinite energies,

$$j_{ext}^{0}(\mathbf{X},t) = +\mathbf{e}_{\bar{q}} \quad \delta(\mathbf{X}+t) + \mathbf{e}_{q} \quad \delta(\mathbf{X}-t)$$
$$j_{ext}^{1}(\mathbf{X},t) = +\mathbf{e}_{\bar{q}}\mathbf{V}_{\bar{q}}\delta(\mathbf{X}+t) + \mathbf{e}_{q}\mathbf{V}_{q}\delta(\mathbf{X}-t),$$

dN/dy of the produced bosons is boost-invariant.

For a finite energy, dN/dy becomes a rapidity plateau.

Meson and photon production rates

Schwinger pair production mechanism:

$$\frac{dN_{I}}{dz \, dt} = A \sum_{q\bar{q}} P_{q\bar{q}} \kappa_{q\bar{q}} \exp\left\{-\frac{\pi (M_{IT}/2)^{2}}{\kappa_{q\bar{q}}}\right\}$$

where $\kappa_{q\bar{q}} = g_{QCD_{2}}^{2}/2$ for meson production

 $\kappa_{q\bar{q}} = \boldsymbol{g}_{QED_2}^2 / 2$ for photon production

Correlation of anomalous soft photon yield with N_{neu} & N_{ch}

 $\frac{(I=0) \text{ photon yeild}}{\eta^0 (I=0) \text{ meson yeild}} > \frac{(I=1) \text{ photon yeild}}{\pi^0 (I=1) \text{ meson yeild}}$

η⁰ meson decay predominantly to neutral hadrons

 π^0 meson is associated with the production of charged π^+ and π^-

Therefore, (photon yield) / $N_{neu} >>$ (photon yield) / N_{ch} .

Predictions:

- Rapidity distribution of anomalous soft photons should have a plateau structure similar to hadron rapdity distribution
- The transverse momentum distribution of the isoscalar (I=0) anomlous soft photons associated with a large N_{neu} should be smaller (with m_T~15 MeV) than those associated with large N_{ch} (with I=1 and m_T~50 MeV)

Conclusion

- Soft photon in hadron production indicates the presence of QCD effects in QED processes
- Many models have been suggested
- Anomalous soft photons may arise from electric charge oscillations that accompany the color charge oscillations of the quarks in the vacuum, during the hadron production process.