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An Overview of the Anomalous Soft Photons 

 in Hadron Production  

1. Introduction 

          -- Why do we want to study soft photons in hadron production? 

          -- What are the anomalous soft photons? 

 

2. Many models to explain the anomalous soft photon phenomenon 

 

3      Peculiar properties in anomalous soft photon production 

 

4.     Proposed quantum field theory explanation 

          -- Bound QCD & QED states in the flux-tube environment 

          -- Production of these bound states in the flux-tube environment 

          -- Evolution of these flux tube-states 

 

5      Conclusions 

           Cheuk-Yin Wong 

Oak Ridge National Laboratory 

 

Paris, May 20, 2013 
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Why study soft photon in a hadron production?  
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Gribov’s question: Where to find soft photons? 
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Experiment Collision 

Energy 

   Photon pT          Photon/Brems  

Ratio 

π+ p,  SLAC,    BC (1979)   10.5 GeV/c   PT  < 20 MeV/c  1.25 ± 0.25 

K+ p,  CERN WA27,BEBC(1984)    70 GeV/c   PT  < 60 MeV/c    4.0 ± 0.8 

K+ p,  CERN  NA22, EHS (1993) 

π+ p,  CERN  NA22,EHS (1997) 

  250 GeV/c   

  250 GeV/c 

  PT  <  40 MeV/c 

  PT  <  40 MeV/c             

  6.4   ± 1.6 

  6.9   ± 1.3 

π- p , CERN WA83,OMEGA(1997)   280 GeV/c    PT  <  10 MeV/c             7.9 ± 1.4 

π- p , CERN WA91,OMEGA(2002)   280 GeV/c   PT  <  20 MeV/c   5.3 ± 0.9 

p p , CERN WA102,OMEGA(2002)   450 GeV/c   PT  < 20 MeV/c   4.1 ±  0.8 

e+e-→hadrons CERN DELPHI(2010)                             

with hadron production  

~91 GeV (CM)   PT  < 60 MeV/c 

 

    ~4.0   

e+e- →μ+μ- CERN DELPHI(2008) 

with no hadron production  

~91 GeV (CM)   PT  < 60 MeV/c     ~1.0 

•Anomalous soft photons are low-pT photons (pT<60 MeV). 

•They are in excess of what is expected from EM bremsstrahlung. 

•They occur only when hadrons are produced.  

(Table compiled by V. Perepelitsa) 



6 

WA102 data for pp collisons at 450 GeV(fixed target)  



7 

No anomalous 

 soft photons in 
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DELPHI “Zero” experiment, using a distant jet as axis 



Models of Anomalous Photons (I) 

• Van Hove  (Ann.Phys.192,66(1989) 

   Van Hove & Lichard (PLB245,605(1990) 

 

Partons at end of virtuality evolution form a glob  of 

cold quark-gluon system of low temperature of  

T~10 – 30 MeV. 
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• Barshay  (PLB227,279(1989)) 

 

pions propagate in pion condensate and emit soft 

photons during the propagation.  Rate of soft photon 

emission depends on the square of pion multiplicity   

• Shuryak (PLB231,175 (1989)) 

 

Soft photons are produced by pions reflecting from a 

boundary under random collisions. Hard reflections 

lead to no effect, but soft pion collisions on wall leads 

to large enhancement in soft photon yield. 

Models of Anomalous Photons (II) 
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• Czyz & Florkowski (ZFPC61,171(1994)) 

 

Soft photons are produced by classical 

bremsstrahlung, with parton trajectories following 

string breaking in a string fragmentation. 

 

Photon emissions along the flux tube agree with the 

Low limit. 

 

Photon emissions perpendicular to the flux tube are 

enhanced over the Low limit. 

 

  

Models of Anomalous Photons (III) 
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• Nachtmann et al (ZFPC67,143 (1995)) 

 

Soft photons produced by synchrotron radiation 

from quarks in the stochastic QCD vacuum. 

• Hatta and Ueda (Nucl.Phys. B837 (2010) 22-39) 

 

Soft photons are produced in ADS/CFT  

supersymmetric Yang-Mills theory. 

 

Models of Anomalous Photons (IV) 
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   Anomalous soft photons, in excess of what is expected 

from EM bremsstrahlung, have been observed in  

K+p,π+p,π-p, pp, and e+e- collisions at high energies. 

1.They are produced only in association with hadron 

production. They are not produced in  e+ + e- → μ + + μ- .  

2.Total anomalous soft photon yield is proportional  

    to total hadron yield. 

3. Transverse momentum of anomalous soft photons   

      pT ~ 2 to 50 MeV. 

4. Anomalous soft photon yield increase faster with increasing 

neutral hadron multiplicity Nneu than with charged hadron 

multiplicity Nch. 

Properties of anomalous soft photons: 
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Anomalous soft  

photon yield is 

proportional to the 

particle (hadron) 

multiplicity 

R
a

te
, 
1

0
-3

 p
h

o
to

n
s
/j
e

t 

e+e- annihilation at Z0 decay (~91 GeV)  

DELPHI (EPJ 2010) arXiv:1004.1587 

Jet Nparticle Multiplicity 

4 



16 

(?) 

(?) 

(?) 

Anomalous soft photons come in groups 
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Quantum field theory of meson and photon production 

• Mesons are bound states of  vacuum oscillations 
in a flux tube 

• When a quark pulls away from an antiquark at 
high energies, the vacuum is polarized 

• Polarization causes the color charges of the 
quarks in the vacuum to oscillate 

• Oscillations of the color charges of the quarks in 
the vacuum produces mesons  

• Oscillations of the color charges of the quarks in 
the vacuum are accompanied by the oscillations 
of the electric charges of quarks in the vacuum  

• Oscillations of the electric charges of the quarks 
in the vacuum produces photons in the flux tube 
environment 
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Color charges oscillations →meson production 

Electric charges oscillations →photon production 

 Such a model can explain: 

1.Photon production accompanies by meson production 

2.Photon yield is proportional to meson yield 

We need to explain the other two features of the 

anomalous soft photon phenomenon: 

3.Why pT ~ 10-50 MeV? 

4.Why anomalous soft photon yield increase much 

faster with increasing neutral particle multiplicity 

than with charged multiplicity? 
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Schwinger QED2 quantum field theory model 

 is a complete model of particle production 

• It shows how the produced particles with a 

mass                       are stable quanta of the 

underlying QED2 quantum field 

 

• It shows how particles are produced, when a 

quark pulls away from an antiquark at high 

energies 

/em 
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Schwinger QED2 quantum field theory  
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Flux tube environemnt is peculiar   
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Bound states in QCD2XQED2  (1)  
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Bound states in QCD2XQED2  (2)  
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Meson and photon masses depend on isospin 

Isospin is a good quantum number in QCD2    

   isoscalar  meson  --        η0           (I=0, I3= 0) 

   isovector mesons –- π+, π0, π-  (I=1, I3=1,0,-1)  

 

Isospin is not a good quantum number in QED2 

   isoscalar  photon (I=0, I3=0) 

   isovector  photon (I=1, I3=0)  

   isovector  QED    (I=1, I3=1) states unlikely  to be stable 
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Meson and photon masses for I3=0 states 
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Meson and photon masses for I3=0 

 



Evolution of a flux-tube QCD2, QED2 state 

Inside the tube, a bound QCD2 or QED2 state exists  

with a mass M, obeying 

                         E2 = pz
2 + M2 

Outside the tube, the state come on the mass shell  

with a mass m, obeying 

                         E2 = pz
2 + pT

2 + m2  

Energy and pz preservation imply that after flux tube fragments,  

                          pT
2 + m2 = M2 

For hadrons, hadron transverse mass can be identified with M 

                       mT(hadron) = M(QCD2) 

For soft photons, m=0, and  
                        pT

2 = M2             pT(soft photon)=M(QED2)           

Soft photon  pT can be identified with QED2 mass M. 
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Quantum field theory of particle production in QED2 
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Wong, Phys. Rev. C80, 054917 (’09) 

For a quark pulling away 

from an antiquark at infinite 

energies, 

stable bosons are produced. 

dN/dy of the produced bosons is boost-invariant. 

For a finite energy, dN/dy becomes a rapidity plateau. 
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Meson and photon production rates 
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Correlation of anomalous soft photon yield with Nneu & Nch 
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η0 meson decay predominantly to neutral 

hadrons 

 

π0 meson  is associated with the production 

of charged π+ and π-  
 

Therefore, (photon yield) / Nneu  >> (photon yield)  /  Nch.  
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Predictions: 

• Rapidity distribution of anomalous soft 
photons should have a plateau structure 

   similar to hadron rapdity distribution 

• The transverse momentum distribution of 
the isoscalar (I=0) anomlous soft photons 
associated with a large Nneu should be 
smaller (with mT~15 MeV) than those 
associated with large Nch (with I=1 and 
mT~50 MeV) 
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Conclusion 

• Soft photon in hadron production indicates 

the presence of QCD effects in QED 

processes 

• Many models have been suggested   

• Anomalous soft photons may arise from 

electric charge oscillations that 

accompany the color charge oscillations of 

the quarks in the vacuum, during the 

hadron production process. 


