Proton Structure and PDFs at HERA

Vladimir Chekelian (MPI for Physics, Munich) on behalf of the H1 and ZEUS Collaborations

- HERA / DIS / NC / CC
- Inclusive ep Cross Sections
- Proton Structure Functions

1

- HERAPDF
- Charm Production
- HERAFitter
- Summary

PHOTON 2013 Paris 20.05.2013

The ep collider HERA (1992–2007)

located at DESY, Hamburg peak luminosity 5 10^{31} cm⁻² sec⁻¹ $Q^2_{max} = 10^5 GeV^2$ $\lambda_{min} \sim 1/1000 r_{proton}$ longitudinal polarisation of e-beam

H1+ZEUS in total 2 x 0.5 fb⁻¹ about equally shared between - e⁺ and e⁻, - positive and negative P_e low proton energy running for F₁

PHOTON 2013 Paris 20.05.2013

Deep Inelastic Scattering (DIS)

Neutral Current (NC): $e^{\pm}p \rightarrow e^{\pm}X$

$$\begin{aligned} \mathbf{Q}^2 &= -\mathbf{q}^2 = -(\mathbf{k} \cdot \mathbf{k}')^2 & \text{virtuality of } \mathbf{\gamma}^*, \ \mathbf{Z}^0, \ \mathbf{W} \\ \mathbf{x} &= \mathbf{Q}^2 / 2(\mathbf{P}\mathbf{q}) & \text{Bjorken x} \\ \mathbf{y} &= (\mathbf{P}\mathbf{q}) / (\mathbf{P}\mathbf{k}) & \text{inelasticity} \end{aligned}$$

 $Q^2 = sxy$

 $s=(k+P)^2$

PHOTON 2013 Paris 20.05.2013

Charged Current (CC): $e^{\pm}p$ νΧ

 $\sigma_{DIS}: \hat{\sigma} \otimes pdf(x)$ Factorisation: - perturbative QCD cross section σ pdf – universal parton distribution functions

Q²-x plane at HERA

HERA: span 5 orders of magnitude in x and Q^2

Inclusive data sets from H1 and ZEUS cover different parts of the phase space are obtained in different periods using different detector components, different beam energies and polarisation.

HERA I (1994-2000) inclusive NC & CC analyses are completed, published both by H1 and ZEUS and combined.

HERA II (2003-2007) NC & CC analyses with longitudinally polarised lepton beams are completed in 2012 and published both by H1 and ZEUS

Full HERA x range is important for the LHC

 \rightarrow HERA inclusive data are an indispensable input to modern QCD PDF fits

PHOTON 2013 Paris 20.05.2013

Inclusive NC & CC at HERA

 \rightarrow remaining differences are due to u/d flavor asymmetry and helicity factors

 \rightarrow all three SF are measured at HERA

$$\tilde{\sigma}_{CC} = \frac{2\pi x}{G_F^2} \left[\frac{M_W^2 + Q^2}{M_W^2} \right]^2 \frac{d^2 \sigma_{CC}}{dx dQ^2}$$
$$\tilde{\sigma}_{CC}^+ \sim (x\overline{u} + x\overline{c}) + (1 - y)^2 (x\overline{d} + x\overline{s})$$
$$\tilde{\sigma}_{CC}^- \sim (x\overline{u} + x\overline{c}) + (1 - y)^2 (x\overline{d} + x\overline{s})$$

 \rightarrow CC data allow flavor separation in QCD fits

PHOTON 2013 Paris 20.05.2013

NC and CC Cross Sections $\sigma_{NC,CC}(x,Q^2)$

Paris 20.05.2013

PDFs at HERA

Polarisation effects in CC and NC

PHOTON 2013 Paris 20.05.2013 V. Chekelian, Proton Structure and PDFs at HERA 8

Structure Function $xF_3(x,Q^2)$

- charge asymmetry of unpolarised e[±]p NC cross sections

 \rightarrow mostly due to γZ interference

 $xF_3^{\gamma Z} = -x\tilde{F}_3 \cdot (Q^2 + M_Z^2)/(a_\kappa Q^2)$

The longitudinal structure function $F_L(x,Q^2)$

- F_L is a pure QCD effect sensitive to gluon density $F_L(x,Q^2) = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} F_2 + 8 \sum_q e_q^2 (1 - \frac{x}{z}) \cdot xg \right]$

- F_L is measured at HERA using cross sections at the same x, Q^2 and different y (different proton beam energies Ep = 460, 575, 920 GeV)

 $\sigma_{\rm NC}(x,Q^2,y) = F_2(x,Q^2) - f(y) F_L(x,Q^2), f(y)=y^2/(1+(1-y)^2)$

HERAPDF: QCD Fits using HERA data only

Combination of charm data at HERA

Extension of visible cross section (D^*, D, μ) to the full phase space at given x and Q2 using HVQDIS and pdfs according to FFNS version of HERAPDF1.0 at NLO

 \rightarrow Precision of the combined data is two times better than each of the most precise individual data sets in the combination

PHOTON 2013 Paris 20.05.2013 V. Chekelian, Proton Structure and PDFs at HERA

10⁻²

X

ZEUS D⁰

ZEUS D⁺

Charm contributions to proton str. functions $F^{cc}_{2(L)}$

PDFs at HERA

Paris 20.05.2013

$$\begin{split} \sigma_{\rm red}^{c\bar{c}} &= \frac{{\rm d}^2 \sigma^{c\bar{c}}}{{\rm d}x {\rm d}Q^2} \cdot \frac{xQ^4}{2\pi \alpha^2 (Q^2) \left(1 + (1-y)^2\right)} \\ &= F_2^{c\bar{c}} - \frac{y^2}{1 + (1-y)^2} F_L^{c\bar{c}} \end{split}$$

FFNS: Fixed Flavour Number Scheme three light quarks (u,d,s) and massive c,b (boson-gluon fusion)

Global fit ABM (\overline{MS} running mass $m_c(m_c)$)

VFNS: Variable Flavour Number Scheme from three to five active quarks (u,d,s.c.b) c,b massive at low Q2, massless at high Q2 → different approximations (matching) in between

Global fits MSTW, CTEQ, NNPDF pole mass (PDG : m_c =1.67) m_c =1.4 GeV recommended by RT

and

consider Mc as an additional effective parameter \rightarrow

Optimal charm mass parameter M_c

 \rightarrow good description of the charm data at Q2 \geq 5 GeV2 using optimal mass corresponding to min χ 2

PHOTON 2013 Paris 20.05.2013

Measurement of charm mass in DIS (MS scheme)

PHOTON 2013 Paris 20.05.2013

Impact of the charm data on PDFs

→ charm distribution function uncertainty is drastically reduced → impact on gluon (through $\gamma g \rightarrow cc$) and light sea

PHOTON 2013 Paris 20.05.2013

Z, W cross section predictions for LHC

HERAFitter Project

HERAFitter project is an open source QCD fit framework ready to extract PDFs and assess the impact of new data

 \rightarrow well integrated into the high energy community (both, experiment and theory)

PHOTON 2013 Paris 20.05.2013

Summary

- HERA I and HERA II inclusive NC and CC cross section measurements are completed and published both by H1 and ZEUS
- Combination of the H1 and ZEUS inclusive NC and CC e[±]p data all HERA I results are combined using a model independent approach leading to significant reduction of systematic uncertainties; combination is extended to include prelim. HERA II data
 → aiming for combination of the complete final HERA I+II H1&ZEUS data
- HERAPDF: QCD analyses of the HERA data only
 HERAPDF 1.0 (HERA I); HERAPDF 1.5 (HERA I + prel. HERA II, recommended), ...
 → aiming for HERAPDF 2.0 using final combined inclusive data from HERA I+II
- Combined charm production cross sections in DIS at HERA control of the heavy quark treatment in the QCD evolution improve precision of PDFs, <u>re</u>duce uncertainties related to charm mass in predictions for LHC measure charm mass in the MS scheme

- HERAFitter

an open source QCD platform ready to extract PDFs using new (LHC) data

PHOTON 2013 Paris 20.05.2013 V. Chekelian, Proton Structure and PDFs at HERA 19

