

Measurement of the $\pi^0 \rightarrow \gamma \gamma$ width and of the π^0 TFF at KLOE-2 and its impact on the muon (g-2)

Ivan Prado Longhi on behalf of the KLOE/KLOE-2 Collaboration Università "Roma Tre" and INFN - Sezione "Roma Tre"

Photon2013-Paris, 22-05-2013

- DAONE and KLOE
- γγ physics at KLOE (e[±] untagged)
- Report on performed and on-going analyses on KLOE Vs=1 GeV data
- KLOE-2: e[±] taggers
- Prospects: $e^+e^- \rightarrow e^+e^-\pi^0$ with KLOE-2

DAQNE & KLOE

Ivan Prado Longhi@Photon2013

KLOE Detector

Electromagnetic calorimeter

- lead/scintillating fibers
- 98% solid angle coverage
- $\sigma_{\rm E}/{\rm E}$ = 5.7%/V(E(GeV))
- σ_t=57 ps/√(E(GeV)) + 100 ps
- •PID capabilities

Drift Chamber

- Gas mixture 90% He + 10% C₄H₁₀
- δp_T/p_T < 0.4% (45⁰<9<135⁰)
- $\sigma_{xy} \approx 150 \ \mu m; \ \sigma_z \approx 2 \ mm$

MAGNETIC FIELD 0.52 T

• $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$

e[±] tagging mandatory to study γγ processes at √s=1.02 GeV

Analyses on L=242.5 pb ⁻¹ off-peak (Vs=1 GeV) data:

- e⁺e⁻ → e⁺e⁻η, η→π⁰π⁰π⁰, η→π⁺π⁻π⁰ [JHEP01(2013)119]
- $e^+e^- \rightarrow e^+e^- \pi^0 \pi^0$ (work in progress)

Two channels:

 $\eta \twoheadrightarrow \pi^0 \: \pi^0 \: \pi^0$

 $\eta \rightarrow \pi^+ \pi^- \pi^0$

- 6γ only with E>15 MeV, 23°<9<157°, |t-r/c|<3σ,
- no tracks in the drift chamber
- yy pairing

$$\chi^{2}_{pair} = \sum_{\gamma\gamma_{pair}}^{3} \left(\frac{M_{\gamma\gamma} - M_{\pi^{0}}}{\sigma(M_{\gamma\gamma})} \right)^{2}$$

• kinematic fit requiring $M_{6\gamma} = m_{\eta}$

- 2γ only with E>15 MeV, 23°<9<157°, |t-r/c|<3σ,
- 2 tracks with opposite charge from a cylinder ρ_{PCA} < 8 cm,
 - $|z_{PCA}| < 8 \text{ cm}, \rho_{first-hit} < 50 \text{ cm}$
- $\gamma\gamma$ pairing to renconstruct π^0
- electron-pion likelihood cut
- kinematic fit requiring $M_{\pi\pi\gamma} = m_{\eta}$

Neutral channel, \approx 720 signal events:

 $\sigma(e^+e^- \rightarrow e^+e^-\eta, \sqrt{s} = 1 \text{ GeV}) = (32.0 \pm 1.5_{stat} \pm 0.9_{syst} \pm 0.2_{BR(\eta \rightarrow 3\pi)}) \text{ pb}$

Charged channel, ≈ 390 signal events:

 $\sigma(e^+e^- \rightarrow e^+e^-\eta, \sqrt{s} = 1 \text{ GeV}) = (34.5 \pm 2.5_{stat} \pm 1.0_{syst} \pm 0.7_{FF} \pm 0.4_{BR}) \text{ pb}$

Combined

 $\sigma(e^+e^- \rightarrow e^+e^-\eta, \sqrt{s} = 1 \text{ GeV}) = (32.7 \pm 1.3_{stat} \pm 0.7_{syst}) \text{ pb}$

 $\Gamma(\eta \rightarrow \gamma \gamma)$ extracted (see reference for details on luminosity function and FF parametrization):

$$\Gamma(\eta \to \gamma \gamma) = (520 \pm 20_{stat} \pm 13_{syst}) \text{ eV}$$
 Most precise measurement,
In agreement with PDG value (510±26) eV

(possible production of $\sigma(500)$ as a resonant intermediate state)

Cut-based and multivariate analysis

Analysis cuts

- 4 γ only with E>15 MeV, |t-r/c|<5 σ_t , in acceptance (23°<9<157°)
- no tracks
- no late clusters
- machine bkg selected from data by topological criteria

Multivariate analysis using TMVA package -> cut on the MVA output

e⁺ e⁻ annhiliation processes normalized according to Xsections

machine background estimation

γγ physics @ KLOE-2: e⁺e⁻ taggers

LET (Low Energy Tagger) → Inside KLOE detector (1m from IP) → energy acceptance (160-400) MeV

HET (High Energy Tagger) → After bending dipole (11m from IP) → energy acceptance (420-495) MeV

Outcoming e^{\pm} tagging allow to close kinematics \rightarrow rejection of ϕ decays background

γγ physics @ KLOE-2: e⁺e⁻ taggers

LET: 160-230 MeV

✓ Inside KLOE
 ✓ LYSO + SiPM calorimeters
 ✓ $σ_E < 10\%$ for E>150 MeV

HET: E > 400 MeV

- ✓ 11 m from IP
- ✓ Scintillator hodoscopes
- ✓ $\sigma_{\rm E}$ ≈ 2.5 MeV, $\sigma_{\rm T}$ ≈ 200 ps

$e^+e^- \rightarrow e^+e^- \pi^0$ with KLOE-2

- the space-like region
- Studied with limited accuracy in the time-like region [Phys.Rev.Lett. 100 (2008) 182001]

 $(-q^2>0.5 \text{ GeV})$ by

- CELLO [Z.Phys. C49 (1991) 401]
- CLEO [Phys.Rev. D57 (1998) 33]
- BaBar [Phys.Rev. D80 (2009) 052002]

 $e^+e^- \rightarrow e^+e^- \pi^0$ with KLOE-2

Ivan Prado Longhi@Photon2013

$\pi^0 \rightarrow \gamma \gamma$ width

Theory (1.4% accuracy): $\mathbf{D}_{theor}^{theor} \rightarrow \mathbf{O}_{theor}$

$$\Gamma^{theor}_{\pi^0 \to \gamma\gamma} = 8.09 \pm 0.11 \text{ eV}$$

Most precise measurement: PrimEx Coll [PRL 106, 162303 (2011)] @ 2.8%

$$\Gamma_{\pi^0 \to \gamma\gamma} = 7.82 \pm 0.14 \pm 0.17 \text{ eV}$$

(using Primakoff effect-> huge model dependence in modelling the nuclear int.)

KLOE-2 PROSPECTS:

Feasible at 1% with 5-6 fb⁻¹ (lepton double-tagging)

Clean sample selected requiring both photons in the barrel of the EMC and HET-HET coincidence (small virtuality of the photons)

Ivan Prado Longhi@Photon2013

		1/	
Experiment	Type	$\Gamma(\pi^0 \rightarrow \gamma \gamma)[eV]$	tot. % error
PDG	Average Value	(7.74 ± 0.55)	7.1%
Cornell Univ.	Primakoff effect	(7.92 ± 0.42)	5.3%
Atherton (CERN)	Direct decay	$(7.25 \pm 0.18 \pm 0.14)$	3.2%
PrimEx Coll.	Primakoff effect	$(7.82 \pm 0.14 \pm 0.17)$	2.8%

$\gamma^*\gamma \pi^0$ transition form factor

Uncertainty of 5-6% for every bin with 5 fb⁻¹

One can then evaluate the slope par. of the FF:

$$a \equiv m_{\pi}^2 \frac{1}{\mathcal{F}_{\pi^0 \gamma^* \gamma^*}(0,0)} \left(\frac{d\mathcal{F}_{\pi^0 \gamma^* \gamma^*}(q^2,0)}{dq^2}\right)_{q^2=0}$$

PDG average dominated by CELLO result:

LINEAR COEFFICIENT OF π^0 ELECTROMAGNETIC FORM FACTOR								
0.032	±0.004	OUR AVE	ERAGE					
+0.026	± 0.024	± 0.048	7548	FARZANPAY	92	SPEC	$\pi^- p \rightarrow \pi^0 n$ at	
+0.025	± 0.014	± 0.026	54k	MEIJERDREES	592 в	SPEC	$\pi^- p \rightarrow \pi^0 n$ at	
+0.0326	6 ± 0.0026	6 ± 0.0026	127	²⁰ BEHREND	91	CELL	$e^+ e^+ \xrightarrow{\rightarrow} 0$	
-0.11	± 0.03	± 0.08	32k	FONVIEILLE	89	SPEC	$e e \pi^{\circ}$ Radiation corr.	

Data at low Q² can provide a validation for the FF parametrization (according to VMD) used by CELLO for fitting their data

Hadronic LbL term to the muon g-2

 $a_{\mu}^{LbyL;\pi}$ evaluated using hadronics models \rightarrow any experimental information on TFF important to constrain models

 $a_{\mu}^{{}_{\rm LbL;\pi^0}} = -e^6 \int \frac{\mathrm{d}^4 q_1}{(2\pi)^4} \frac{\mathrm{d}^4 q_2}{(2\pi)^4} \frac{1}{q_1^2 q_2^2 (q_1 + q_2)^2 [(p+q_1)^2 - m^2] [(p-q_2)^2 - m^2]} \qquad F_{PS^* \gamma^* \gamma^*} \left(\left(\begin{array}{c} q_1 \\ q_2 \end{array} \right) + \left(\begin{array}{c} q_1 \\ q_2 \end{array} \right) + \left(\begin{array}{c} q_1 \\ q_2 \end{array} \right) + \left(\begin{array}{c} q_2 \end{array} \right)$ $\times \begin{bmatrix} \frac{\mathcal{F}_{\pi^*\gamma^*\gamma^*}(q_2^2, q_1^2, q_3^2) \ \mathcal{F}_{\pi^*\gamma^*\gamma}(q_2^2, q_2^2, 0)}{q_2^2 - m_{\pi}^2 + i\varepsilon} \ T_1(q_1, q_2; p) \\ + \frac{\mathcal{F}_{\pi^*\gamma^*\gamma^*}(q_3^2, q_1^2, q_2^2) \ \mathcal{F}_{\pi^*\gamma^*\gamma}(q_3^2, q_3^2, 0)}{q_3^2 - m_{\pi}^2 + i\varepsilon} \ T_2(q_1, q_2; p) \end{bmatrix}, \quad (48)$ Theory:

[A. Nyffeler, 0912.1441] [M. Knecht and A. Nyffeler, Phys. Rev. D65, 073034 (2002)] [ibid.] [A. E. Dorokhov, 0905.4577] [G. P. Lepage and S. J. Brodsky,

Phys. Rev. D 22, 2157 (1980)]

can be only sensitive to a subset of the model parameters

 π^0 exchange contribution dominant

Full off-shell TFF needed
$$\,\mathcal{F}_{\pi^{0*},\gamma^*\gamma}(m_{\pi^0}^2,q_1^2,q_2^2)$$

A measurement with KLOE-2 of $\,\mathcal{F}_{\pi^0,\gamma^*\gamma}(m_{\pi^0}^2,q_1^2,0)$

 $e^+e^- \rightarrow e^+e^- \pi^0$ with KLOE-2

Hadronic LbL term to the muon g-2: KLOE-2 impact on accuracy

Some models are very sensitive to the variation of the parameters related to the offshellness of the pion: e.g. off-shell LMD+V model

Other models do not have these sources of uncertainty: e.g. VMD model

> Phys. Rev. D79 (2009) 073012 Phys. Rev. D70 (2004) 113006

Estimate of KLOE-2 impact on the accuracy of $a_{\mu}^{LbyL;\pi}$: one uses EKHARA $e^+e^- \rightarrow e^+e^-\pi^0$ simulation as new "data" and consider the sets:

- A1: CELLO, CLEO, PrimEx(PDG)
- A2: CELLO, CLEO, PrimEx, KLOE-2
- B1: CELLO, CLEO, BaBar, PrimEx(PDG)
- B2: CELLO, CLEO, BaBar, PrimEx, KLOE-2

 $a_{\mu}^{LbyL;\pi}$ evaluated fitting LMD+V and VMD models to these sets following 2 approaches: Jegerlehner-Nyffler (JN) and Melnikov-Vainshtein (MV)

 $e^+e^- \rightarrow e^+e^- \pi^0$ with KLOE-2

Hadronic LbL term to the muon g-2

Table 1 Estimate of KLOE-2 impact on the accuracy of $a_{\mu}^{\text{LbyL};\pi^0}$ in case of one year of data taking (5 fb⁻¹). For calculation we used the Jegerlehner-Nyffeler (JN) [19,20] and Melnikov-Vainshtein (MV) [17] approaches. The values marked with asterisk (*) do not contain additional uncertainties coming from the "off-shellness" of the pion (see the text). Data sets used for fits (A0, A1, A2, B0, B1, B2) — see the text, eq. (9). **PrimFx (PDG)** -> **KLOE: ~ 2 reduction factor in the error**

	Model	Data	$\chi^2/d.o.f.$		Parameters		$a_{\mu}^{\mathrm{LbyL};\pi^{0}} \times 10^{11}$
*,	VMD VMD	A1 A2	$6.6/19 \\ 7.5/27$	$M_V = 0.776(13) \text{ GeV}$ $M_V = 0.778(11) \text{ GeV}$	$F_{\pi} = 0.0919(13) \text{ GeV}$ $F_{\pi} = 0.0923(4) \text{ GeV}$		$(57.7 \pm 2.1)_{JN}$ $(57.3 \pm 1.1)_{JN}$
	VMD VMD	B1 B2	78/36 79/44	$M_V = 0.813(8) \text{ GeV}$ $M_V = 0.813(5) \text{ GeV}$	$F_{\pi} = 0.0925(13) \text{ GeV}$ $F_{\pi} = 0.0925(4) \text{ GeV}$		-
*	LMD+V, $h_1 = 0$ LMD+V, $h_1 = 0$	A1 A2	6.6/19 7.5/27	$\bar{h}_5 = 6.96(29) \text{ GeV}^4$ $\bar{h}_5 = 6.99(28) \text{ GeV}^4$	$\bar{h}_7 = -14.90(21) \text{ GeV}^6$ $\bar{h}_7 = -14.83(7) \text{ GeV}^6$		$(79.8 \pm 4.2)_{MV}$ $(73.0 \pm 1.7)_{JN}^{*}$ $(80.5 \pm 2.0)_{MV}$ $(72.5 \pm 0.8)_{JN}^{*}$ $(80.0 \pm 0.8)_{MV}$
*	$LMD+V, h_1 = 0$ $LMD+V, h_1 = 0$	B1 B2	$\frac{69}{36}$ 70/44	$\bar{h}_5 = 7.81(11) \text{ GeV}^4$ $\bar{h}_5 = 7.79(10) \text{ GeV}^4$	$\bar{h}_7 = -14.70(20) \text{ GeV}^6$ $\bar{h}_7 = -14.81(7) \text{ GeV}^6$		
*,	$LMD+V, h_1 \neq 0$ $LMD+V, h_1 \neq 0$	A1 A2	6.5/18 7.5/26	$\bar{h}_5 = 6.85(67) \text{ GeV}^4$ $\bar{h}_5 = 6.90(64) \text{ GeV}^4$	$\bar{h}_7 = -14.91(21) \text{ GeV}^6$ $\bar{h}_7 = -14.84(7) \text{ GeV}^6$	$h_1 = -0.03(17) \text{ GeV}^2$ $h_1 = -0.02(17) \text{ GeV}^2$	$(72.9 \pm 2.1)^*_{JN}$ $(72.4 \pm 1.5)^*_{JN}$
,	$LMD+V, h_1 \neq 0$ $LMD+V, h_1 \neq 0$	B1 B2	$\frac{18}{35}$ $\frac{19}{43}$	$h_5 = 6.44(22) \text{ GeV}^4$ $\bar{h}_5 = 6.47(21) \text{ GeV}^4$	$h_7 = -14.92(21) \text{ GeV}^6$ $\bar{h}_7 = -14.84(7) \text{ GeV}^6$	$h_1 = -0.17(2) \text{ GeV}^2$ $h_1 = -0.17(2) \text{ GeV}^2$	$(72.4 \pm 1.6)_{JN}^{} (71.8 \pm 0.7)_{JN}^{*}$

Eur. Phys. J. C72 (2012) 1917

♦ KLOE@DAΦNE: good place to study γγ physics

Completed and ongoing analyses: $\gamma\gamma \rightarrow \eta$ (published), $\gamma\gamma \rightarrow \pi^0\pi^0$

- ♦ KLOE Upgrades:
 - ♦ e[±] taggers (both LET nd HET) installed;
 - Inner Tracker, QCALT and CCAL installation near to be completed
 - ♦ Expect to collect O(10 fb⁻¹) in the next 3 years
- Promising $e^+e^- \rightarrow e^+e^- \pi^0$ analysis with 5-6 fb⁻¹ collected at KLOE-2:
 - $\pi^{0}\gamma\gamma$ width with statistical error of $\approx 1\%$
 - Transition Form Factor in the space-like region at low Q² with statistical error of < 6% in each bin -> test consistency of the models fitted to CELLO, CLEO, BaBar data

 \diamond Pion-exchange contribution to the μ g-2: improvement of uncertainty, within several theoretical frames, thanks to KLOE-2 data

(possible production of $\sigma(500)$ as a resonant intermediate state)

Cut-based and multivariate analysis

 σ (e⁺e⁻ \rightarrow ηγ, Vs=1 GeV) = (856 ± 8_{stat} ± 12_{syst} ± 11_{BR}) pb

> Used as a constraint in the fit for $e^+e^- \rightarrow e^+e^- \eta \rightarrow e^+e^- \pi^+\pi^-\pi^0$

 $> \sigma$ (e⁺e⁻ → ηγ) can be independently derived as a by product of the main analysis in the case of e⁺e⁻ → e⁺e⁻ η → e⁺e⁻ 3π⁰, yielding σ (e⁺e⁻ → ηγ, Vs=1 GeV) = (853 ± 25_{stat} ± 5_{syst} ± 6_{BR}) pb, in agreement with the value obtained in the dedicated analysis.

DAφ**NE**: the Frascati φ-factory

