## Review of Recent Leading-Order Hadronic Vacuum Polarization Calculation



### Zhiqing Zhang

In collaboration with M. Davier, A. Hoecker, B. Malaescu



Comprendre le monde, construire l'avenir®

### Outline

Introduction Evaluation of hadronic contribution to  $a_{\mu}$ A few open issues Conclusion & perspective

Photon 2013, Paris, May 22

## Introduction

### The SM has been extremely successful:

- the only missing component Higgs now discovered (to be verified)
- all predictions verified often to extraordinary precision
- no sign of new physics with few exceptions, e.g. the muon g-2 anomaly



#### DHMZ 10 (arXiv:1010.4180v2)



$$a_{\mu}^{exp} - a_{\mu}^{SM} = (29.6 \pm 8.1) \times 10^{-10}$$
  
 $\Rightarrow 3.6$  "standard deviations"

Maybe the best hint for new physics

Photon 2013, Paris, May 22

## Why LO Hadronic Contribution?

All numbers shown in 10<sup>-10</sup>



→SM error on a<sub>µ</sub> dominated by (LO) hadronic part, which is mostly related to the precision of experimental data
- either from e<sup>+</sup>e<sup>-</sup>

- or from tau

# Hadronic Contribution and had



Leading-Order Higher-Order Light-By-Light  $a_{\mu}^{\text{had}} = a_{\mu}^{\text{had},\text{LO}} + a_{\mu}^{\text{had},\text{HO}} + a_{\mu}^{\text{had},\text{LBL}}$   $\simeq 700(\sim 7) - 9.79(0.09) + 10.5(2.6)$  $(\rightarrow \sim 4) - 9.84 (0.07)$ 

| HO: Hagiwara et al., 2007<br>2011          |
|--------------------------------------------|
| LBL: Prades-de Rafael-<br>Vainshtein, 2008 |

- Hadronic (q & g) loop contributions cannot reliably be calculated from perturbative QCD (pQCD)
- > There are however lattice and model based attempts ( $\rightarrow$  M. Benayoun):
  - S. Bodenstein, C. A. Dominguez, K. Schilcher, H. Spiesberger, arXiv:1302.1735v3 [hep-ph]
  - M. Della Morte, B. Jäger, A. Jüttner and H. Wittig, JHEP 1203 (2012) 055, arXiv:1112.2894 [hep-lat]
  - M. Benayoun, P. David, L. DelBuono, F. Jegerlehner, arXiv:1210.7184; Eur.Phys.J. C72 (2012) 1848 [arXiv:1106.1315]
  - D. Greynat and E. de Rafael, JHEP 1207 (2012) 020 [arXiv:1204.3029]
  - T. Goecke, C. Fischer, R. Williams, Phys. Lett. B704 (2011) 211 [arXiv:1107.2588]
  - S. Bodenstein, C. A. Dominguez, and K. Schilcher, Phys. Rev. D85 (2012) 014029, arXiv:1106.0427

# LO Hadronic Contribution a<sub>u</sub>had

We focus here on methods which provide the most precise estimate
 Use low energy e<sup>+</sup>e<sup>-</sup> data to calculate the dominant LO contributions:



- Davier, Hoecker, Malaescu, and Zhang, Eur. Phys. J. C71 (2011) 1, Erratum-ibid. C72 (2012) 1874, arXiv: 1010.4180 [hep-ph], updated for FF workshop 2012
- Jegerlehner and Szafron, Eur. Phys. J. C71, 1632 (2011), 1101.2872
- Hagiwara, Liao, Martin, Nomura, and Teubner, J. Phys. G G38, 085003 (2011), 1105.3149

Photon 2013, Paris, May 22

# Input eter Data in Combination with pQCD



#### DHMZ 10

#### • [π<sup>0</sup>γ-1.8GeV]

- sum about 22 exclusive channels
- estimate unmeasured using isospin relations

#### • [1.8-3.7] GeV

- good agreement between data and pQCD calcultion
   → use 4-loop pQCD
- J/ψ, ψ(2s): Breit-Wigner integral
- [3.7-5] GeV use data

#### • >5GeV

use 4-loop pQCD calculation

HLMNT 11 have similar treatment

## **Relative Contribution of Input Data vs Energy**



- → Energy region 0.6-0.9 GeV dominates in both value and uncertainty
- $\rightarrow$  2 $\pi$  channel contributes more than 70%
- → The e+e- data precision (was) limited
- → Use (complement with) tau data

Alemany, Davier, Hoecker 1998

## Connect $\tau$ and e<sup>+</sup>e<sup>-</sup> Data through CVC - SU(2)



#### Hadronic physics factorizes in Spectral Functions :

Isospin symmetry connects I=1  $e^+e^-$  cross section to vector  $\tau$  spectral functions:

fundamental ingredient relating long distance (resonances) to short distance description (QCD)

$$\sigma^{(l=1)}\left[e^+e^- \to \pi^+\pi^-\right] = \frac{4\pi\alpha^2}{s}\upsilon\left[\tau^- \to \pi^-\pi^0\upsilon_\tau\right]$$

$$v\left[\tau^{-} \rightarrow \pi^{-}\pi^{0}v_{\tau}\right] \propto \begin{bmatrix} \mathsf{BR}\left[\tau^{-} \rightarrow \pi^{-}\pi^{0}v_{\tau}\right] \\ \mathsf{BR}\left[\tau^{-} \rightarrow e^{-}\overline{v_{e}}v_{\tau}\right] \\ \mathsf{BR}\left[\tau^{-} \rightarrow e^{-}\overline{v_{e}}v_{\tau}\right] \\ \mathsf{branching fractions} \\ \mathsf{mass spectrum \ kinematic factor (PS)} \end{bmatrix}$$

All known isospin breaking effects considered: Davier et al., Euro. Phys. J. C66 (2010) 127

## What's New?

 KLOE has published new e<sup>+</sup>e<sup>-</sup>→π<sup>+</sup>π<sup>-</sup> cross section based on 2002 data. This time normalized to e<sup>+</sup>e<sup>-</sup>→μ<sup>+</sup>μ<sup>-</sup> cross section → reduced syst errors
 → Talk of A. Passeri

□ New data from Babar:

- ✓  $e^+e^-$ →2 $\pi^+2\pi^-$  (arXiv:1201.5677)
- ✓  $e^+e^-$ → $K^+K^-\pi^+\pi^-$ ,  $K^+K^-\pi^0\pi^0$  (arXiv:1103.3001)
- $\rightarrow$  Talk of B. Malaescu
- Updated ALEPH tau data

## **KLOE's New Measurements**

New measurement (Phys. Lett. B720 (2013) 336):
 KLOE 2012 (data of 2002, ~240pb<sup>-1</sup>, 0.35-0.95GeV<sup>2</sup>)

 Previous measurements (Phys. Lett. B 700 (2011) 102, Phys. Lett. B 670, (2009) 285):
 KLOE 2010 (large γ angle data 2006, ~233pb<sup>-1</sup>, 0.1-0.85GeV<sup>2</sup>)
 KLOE 2008 (small γ angle data 2002, ~240pb<sup>-1</sup>, 0.35-0.95GeV<sup>2</sup>)

| Measurement   | $\Delta^{\pi\pi}a_{\mu}[0.35 - 0.85 \text{ GeV}^2] \times 10^{10}$ |
|---------------|--------------------------------------------------------------------|
| <br>KLOE 2012 | $377.4 \pm 1.1_{\text{stat}} \pm 2.7_{\text{sys\&theo}}$           |
| KLOE 2010     | $376.6 \pm 0.9_{\mathrm{stat}} \pm 3.3_{\mathrm{sys\&theo}}$       |
|               | $\Delta^{\pi\pi}a_{\mu}[0.35 - 0.95 \ { m GeV}^2] 	imes 10^{10}$   |
| KLOE 2012     | $385.1 \pm 1.1_{\text{stat}} \pm 2.7_{\text{sys\&theo}}$           |
| KLOE 2008     | $387.2 \pm 0.5_{\text{stat}} \pm 3.3_{\text{sys\&theo}}$           |



# **Impact of KLOE12 Data in New Combination**

A new combination performed including KLOE12 data by taking its correlation with previous data to our best knowledge



→ KLOE12 takes over KLOE08 at 0.9-0.975GeV, the rest hardly changed

| $a_{\mu}(2\pi, ee) \ 10^{-10}$ | 0.3-1.8GeV                               |
|--------------------------------|------------------------------------------|
| Old                            | $507.24 \pm 2.87_{stat} \pm 2.56_{syst}$ |
| New                            | $506.56 \pm 2.61_{stat} \pm 2.38_{syst}$ |

Photon 2013, Paris, May 22



Zhiqing Zhang (zhang@lal.in2p3.fr, LAL, Orsay)

# **Updated ALEPH Spectral Function (SF)**

- One problem identified for the publicly available ALEPH ππ<sup>0</sup> covariance matrix: treatment of statistical correlations from the SVD unfolding Thanks to D. Boito for bringing this issue to our attention!
- Redone unfolding of the  $\pi\pi^0$ ,  $\pi^2\pi^0$ ,  $\pi^3\pi^0$ ,  $3\pi\pi^0$  and  $3\pi$  spectral functions, using a new Iterative, Dynamically Stabilized (IDS) method (arXiv:0907.3791)
- = Effects on rho parameter fit to  $\pi\pi^0$ ,  $\alpha_s$  determination, g-2 calculation are checked and found small
- Updated spectral functions to be released soon

## Comparison of New and OLD SF: $\pi\pi^0$



The difference on the peak is within 2%, slightly larger off the peak

At low and high mass tails, larger bin size used in the new unfolding

| <b>Old</b> (Euro. Phys. J. C66 (2010) 127) |                          | New                        |                          |                            |
|--------------------------------------------|--------------------------|----------------------------|--------------------------|----------------------------|
| a <sub>μ</sub> (ππ) 10^-10                 | 2m <sub>π</sub> -0.36GeV | 0.36-1.8GeV                | $2m_{\pi}$ -0.36GeV      | 0.36-1.8GeV                |
| ALEPH                                      | 9.46±0.33 <sub>exp</sub> | 499.19±5.20 <sub>exp</sub> | 9.80±0.40 <sub>exp</sub> | 501.22±4.48 <sub>exp</sub> |
| Combined tau                               | 9.76±0.14 <sub>exp</sub> | 505.46±1.97 <sub>exp</sub> | 9.82±0.13 <sub>exp</sub> | 506.35±1.86 <sub>exp</sub> |

# Comparison of New and OLD SF: $3\pi\pi^0$ , $\pi3\pi^0$



Note: the old "exp" error contains normalization uncertainty, redundant with "Br" error,  $\rightarrow$  fixed

Photon 2013, Paris, May 22

# Open Issue in $\pi^{+}\pi^{-}$ Channel (e<sup>+</sup>e<sup>-</sup>)

Average (green error band) obtained with HVPTools package (DHMYZ 09)



Shape difference between BaBar and KLOE:

- → inflated error in the data combination (PDG prescription)
- $\rightarrow$  need new measurements to resolve the difference:
  - KLOE provided data normalized to  $\mu^+\mu^-\gamma$  instead of MC but these data are highly correlated with KLOE08 ( $\rightarrow$  talk by A. Passeri)
  - VEPP-2000 in Novosibirsk (> talk by S. Eidelman)



All known isospin breaking effects studied/taken into account in M. Davier et al., Eur. Phys. J. C66, 127 (2010), [arXiv:0906.5443].  $\Rightarrow 2.9\sigma$  (2006)  $\Rightarrow 2.4\sigma$ 

Jegerlehner and Szafron claim in Eur. Phys. J. C71, 1632 (2011), [arXiv:1101.2872] that missing  $\rho^{0}$ - $\gamma$  mixing in  $\tau$  data can explain e<sup>+</sup>e<sup>-</sup> and  $\tau$  difference

Photon 2013, Paris, May 22

## **Problematic** $\pi^{+}\pi^{-}2\pi^{0}$ Channel

Old contribution: 16.8 ± 1.3 (Davier-Eidelman-Hoecker-Zhang, 2006) Update 2009: 18.0 ± 1.2 including preliminary ISR BaBar data: A. Petzold, EPS-HEP (2007)

 $\tau$  [thre.-1.8GeV] (2009): 21.4 ± 1.4



→ Large scattering among  $e^+e^-$  data sets → (Normalization) difference  $e^+e^-$  vs.  $\tau$  needs clarification/cross-check

# Comparison HLMNT ('11) and DHMZ ('10)

| Channel                                | HLMNT 11         | DHMZ (10) [10]    | Difference |
|----------------------------------------|------------------|-------------------|------------|
| $\eta\pi^+\pi^-$                       | $0.88\pm0.10$    | $1.15\pm0.19$     | -0.27      |
| $K^+K^-$                               | $22.09\pm0.46$   | $21.63\pm0.73$    | 0.46       |
| $K^0_S K^0_L$                          | $13.32\pm0.16$   | $12.96\pm0.39$    | 0.36       |
| $\omega\pi^0$                          | $0.76\pm0.03$    | $0.89\pm0.07$     | -0.13      |
| $\pi^+\pi^-$                           | $505.65\pm3.09$  | $507.80 \pm 2.84$ | -2.15      |
| $2\pi^+2\pi^-$                         | $13.50\pm0.44$   | $13.35\pm0.53$    | 0.15       |
| $3\pi^+3\pi^-$                         | $0.11\pm0.01$    | $0.12\pm0.01$     | -0.01      |
| $\pi^+\pi^-\pi^0$                      | $47.38 \pm 0.99$ | $46.00 \pm 1.48$  | 1.38       |
| $\pi^+\pi^-2\pi^0$                     | $18.62 \pm 1.15$ | $18.01 \pm 1.24$  | 0.61       |
| $\pi^0\gamma$                          | $4.54\pm0.14$    | $4.42\pm0.19$     | 0.12       |
| $\eta\gamma$                           | $0.69\pm0.02$    | $0.64\pm0.02$     | 0.05       |
| $\eta 2\pi^+ 2\pi^-$                   | $0.02\pm0.00$    | $0.02\pm0.01$     | 0.00       |
| $\eta\omega$                           | $0.38\pm0.06$    | $0.47\pm0.06$     | -0.09      |
| $\eta\phi$                             | $0.33\pm0.03$    | $0.36\pm0.03$     | -0.03      |
| $\phi(\rightarrow \text{unaccounted})$ | $0.04\pm0.04$    | $0.05\pm0.00$     | -0.01      |
| Sum of isospin channels                | $5.98\pm0.42$    | $6.06\pm0.46$     | -0.08      |
| Total                                  | $634.28\pm3.53$  | $633.93 \pm 3.61$ | 0.35       |

11 Table 4 from HLMNT

#### → Different data combination and error treatment

Photon 2013, Paris, May 22

| <b>Comparing Meas</b>                                               | surements with Predicti                                                                                                                                                                                                       | ions                                                                 |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| <u>Measurement</u> (BNL-E821)<br>PRD73(06)072003,<br>hep-ex/0602035 | $11\ 659\ 208.9\ \pm\ 5.4_{\rm stat}\ \pm 3.3_{\rm syst}$                                                                                                                                                                     | [10-10]                                                              |
| <u>SM predictions</u> :                                             |                                                                                                                                                                                                                               |                                                                      |
| QED                                                                 | 11 658 471.809 $\pm$ 0.014 <sub>5th order</sub> $\pm$ 0.008 <sub><math>\delta\alpha</math></sub><br>Improved (Kinoshita et al.)                                                                                               | [10 <sup>-10</sup> ]                                                 |
| HAD<br>- LO                                                         | DHMZ10 e <sup>+</sup> e <sup>-</sup> : $692.3 \pm 4.2 \pm 0.2_{\psi} \pm 0.3_{QCD}$<br>HLMNT11 e <sup>+</sup> e <sup>-</sup> : $694.9 \pm 3.7 \pm 2.1_{rad}$<br>DHMZ10 $\tau$ : $701.5 \pm 4.2 \pm 0.3_{rad} \pm 1.9_{SU(2)}$ | [10 <sup>-10</sup> ]<br>[10 <sup>-10</sup> ]<br>[10 <sup>-10</sup> ] |
| - HO<br>- LBL                                                       | $-9.8 \pm 0.1$<br>10.5 ± 2.6                                                                                                                                                                                                  | [10 <sup>-10</sup> ]<br>[10 <sup>-10</sup> ]                         |
| Weak                                                                | 15.4 ± 0.2                                                                                                                                                                                                                    | [10 <sup>-10</sup> ]                                                 |

## **Deviation Measurement & Prediction**



→ Deviation ee: 
$$(28.5 \pm 8.0) 10^{-10} (3.6 \sigma)$$
  
Deviation  $\tau$ :  $(19.5 \pm 8.3) 10^{-10} (2.4 \sigma)$ 

# **Conclusion & Perspective**

Deviation 3.6 $\sigma$  is significant but not sufficient for claiming new physics (the  $a_{\mu}$  deviation and large H $\rightarrow\gamma\gamma$  rate can however be explained by a stau,  $\rightarrow$  Giudice, Paradisi and Strumia, arXiv:1207.6393)

#### On the prediction side:

- the tension in  $\pi^+\pi^-$  channel between Babar (CMD2, SND) and KLOE prevents further error reduction

→ New measurements (KLOE, VEPP-2000) timely

- the LBL has the subleading error contribution

#### On the experimental side:

- the experimental uncertainty currently dominates over prediction
  - → looking forward to a factor of 4 reduction from Fermilab & JPARC (→talk Mark Lancaster)