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With Joaquim Prades and Eduardo de Rafael we wrote 
in 2008 a kind of white paper on HLbL summarizing our
understanding of the problem at that time.
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In our ’08 mini-review we combined different 
calculations with some educated guesses about possible 
errors to come to:

Ref. [7, 8] with, however, a larger error which covers the effect of other unaccounted meson exchanges,

aHLbL(scalars) = −(0.7 ± 0.7) × 10−10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(π−dressed loop) = −(1.9 ± 1.9) × 10−10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (6), we get

aHLbL = (105 ± 26) × 10−11 , (16)

as our final estimate.
We wish to emphasize, however, that this is only what we consider to be our best estimate at

present. In view of the proposed new gµ−2 experiment, it would be nice to have more independent
calculations in order to make this estimate more robust. More experimental information on the decays
π0 → γγ∗, π0 → γ∗γ∗ and π0 → e+e− (with radiative corrections included) could also help to
confirm the result of the main contribution in Eq. (12).

More theoretical work is certainly needed for a better understanding of the other contributions
which, although smaller than the one from pseudoscalar exchanges, have nevertheless large uncertain-
ties. This refers, in particular, to pseudovector exchanges in Eq. (13) but other C-even exchanges are
also important. Experimental data on radiative decays and two-photon production of C-even reso-
nances could be helpful. An evaluation of 1/Nc–suppresed loop contributions present even a more
difficult task. New approaches to the dressed pion loop contribution, in parallel with experimental in-
formation on the vertex π+π−γ∗γ∗, would be very welcome. Again, measurement of the two-photon
processes like e+e− → e+e−π+π− could give some information on that vertex and help to reduce
the model dependence and therefore the present uncertainty in Eq. (15).
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However the error estimates are quite subjective and 
further study of different exchanges is certainly needed.

While I do not think that there were significant changes
during the last 5 years I’ll try to comment on few 
suggestions which appeared at this period.
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1. Introduction.

From a theoretical point of view the hadronic light–by–light scattering (HLbL) contribution to the
muon magnetic moment is described by the vertex function (see Fig. 1 below):

Γ(H)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

∫
d4k2

(2π)4
Π(H)

µνρσ(q, k1, k3, k2)

k2
1k

2
2k

2
3

γν(!p2+ !k2 −mµ)−1γρ(!p1− !k1 −mµ)−1γσ , (1)

where mµ is the muon mass and Π(H)
µνρσ(q, k1, k3, k2), with q = p2 − p1 = −k1 − k2 − k3, denotes the

off–shell photon–photon scattering amplitude induced by hadrons,

Π(H)
µνρσ(q, k1, k3, k2) =

∫

d4x1

∫

d4x2

∫

d4x3 exp[−i(k1 · x1+k2 · x2+k3 · x3)]

×〈0|T {jµ(0) jν(x1) jρ(x2) jσ(x3)}|0〉 . (2)

Here jµ is the Standard Model electromagnetic current, jµ(x) =
∑

q Qqq̄(x)γµq(x), where Qq denotes
the electric charge of quark q. The external photon with momentum q represents the magnetic field.
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Figure 1: Hadronic light–by–light scattering contribution.

We are interested in the limit q → 0 where the current conservation implies that Γ(H)
µ is linear in q,

Γ(H)
µ = −

aHLbL

4mµ
[γµ , γν ] qν . (3)

The muon anomaly can then be extracted as follows

aHLbL =
−ie6

48mµ

∫
d4k1

(2π)4

∫
d4k2

(2π)4
1

k2
1k

2
2k

2
3

[
∂

∂qµ
Π(H)

λνρσ(q, k1, k3, k2)

]

q=0

× tr
{

(!p + mµ)[γµ, γλ](!p + mµ)γν(!p+ !k2 − mµ)−1γρ(!p− !k1 − mµ)−1γσ
}

. (4)

Unlike the case of the hadronic vacuum polarization (HVP) contribution, there is no direct ex-
perimental input for the hadronic light–by–light scattering (HLbL) so one has to rely on theoretical
approaches. Let us start with the massive quark loop contribution which is known analytically,

aHLbL(quark loop) =
(α

π

)3
NcQ

4
q

{
[
3

2
ζ(3) −

19

16

]

︸ ︷︷ ︸

0.62

m2
µ

m2
q

+ O

[

m4
µ

m4
q

log2 m2
µ

m2
q

]}

, (5)

where Nc is the number of colors and mq ' mµ is implied. It gives a reliable result for the heavy
quarks c , b , t with mq ' ΛQCD. Numerically, however, heavy quarks do not contribute much. For
the c quark, with mc ≈ 1.5 GeV,

aHLbL(c) = 0.23 × 10−10 . (6)
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        exchange for small momenta we arrive at 
the estimate
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Figure 2: Diagrams for HLbL: (a) meson exchanges, (b) the charged pion loop, the blob denotes the full
γ
∗
γ
∗
→ π

+
π
− amplitude.

limit . The mass of the ρ plays the role of an ultraviolet scale in the integration over ki in Eq. (4)
while the pion mass provides the infrared scale. Of course, the muon mass is also important at low
momenta but one can keep the ratio mµ/mπ fixed in the chiral limit.

Equation (9) provides the result for aHLbL for the term leading in the 1/Nc expansion in the
chiral limit where the pion mass is much less than the next hadronic scale. In this limit the dominant
neutral pion exchange produces the characteristic universal double logarithmic behavior with the exact
coefficient given in Eq. (9). Testing this limit was particularly useful in fixing the sign of the neutral
pion exchange.

Although the coefficient of the ln2(mρ/mπ) term in Eq. (9) is unambiguous, the coefficient of the
ln(mρ/mπ) term depends on low–energy constants which are difficult to extract from experiment [2, 3]
(they require a detailed knowledge of the π0 → e+e− decay rate with inclusion of radiative corrections).
Model dependent estimates of the single logarithmic term as well as the constant term show that these
terms are not suppressed. It means that we cannot rely on chiral perturbation theory and have to
adopt a dynamical framework which takes into account explicitly the heavier meson exchanges as well.

Note that the overall sign of the pion exchange, for physical values of the masses, is much less
model dependent than the previous chiral perturbation theory analysis seems to imply. In fact, if the
π0γ∗γ∗ form factor does not change its sign in the Euclidean range of integration over ki, the overall
sign is fixed even without knowledge of the form factor. This implies the same positive sign without
use of the chiral limit, i.e. the same sign for exchanges of heavier pseudoscalars, JPC = 0−+, where
no large logarithms are present. Moreover, one can verify the same positive sign for exchanges by
mesons with JPC = 1++, 2−+ with an additional assumption about dominance of one of the form
factors. Exchanges with JPC = 0++, 1−+, 2++ give, however, contributions with a negative sign to
aHLbL under similar assumptions, but they are much smaller.

Next–to–leading terms in the large Nc limit

Now let us turn to the next–to–leading terms in 1/Nc expansion. Generically these terms are due to
two–particle exchanges in the HLbL amplitude, see the diagram in Fig. 2(b) with π+π− substituted by
any two meson states. What is specific about the charged pion loop is its strong chiral enhancement
which is not just logarithmic but power–like in this case. In Eq. (8) it is reflected in the term c2 m2

ρ/m2
π .

The point–like pion loop calculation which gives aHLbL(ππ) = −4.6 × 10−10 corresponds to c2 =
−0.065. The rather small value of c2 can be contrasted with the one of the coefficient c1 which is not
suppressed: c1 ≈ 1.7. As we will see the smallness of c2 is related to the fact that chiral perturbation
theory does not work in this case. To see that this is indeed what happens is sufficient to compare
the point–like loop result with the model dependent calculations where form factors are introduced.
Two known results, aHLbL(ππ) = −(0.4 ± 0.8) × 10−10 [4, 5] and aHLbL(ππ) = −(1.9 ± 0.5) × 10−10

[7, 8], show a 100% deviation from the point–like number. It means that the bulk of the contribution
does not come from small virtual momenta ki and, therefore, chiral perturbation theory should not
be applied. In other words, the term c3 in Eq. (8) with no chiral enhancement is comparable with
c2(m2

ρ/m2
π). It means that loops with heavier mesons should also be included.
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The first diagram is linear in N_c (dual to the quark loop.
The second one is the zero order in N_c but chirally 
enhanced as          . Actually similar enhancement in the 
vacuum polarization does not work, the real parameter 
occurs to be rather               . 
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logs,  (Knecht’s talk)             

1 Introduction

m2
⇢

/40m2
⇡

⇡0

m
u

⇡ m
d

⇡ m
s

⇡ 300 MeV

aHLbL ⇡ 120 ⇥ 10�11

q1

q2

q3

~A =
1

2
~B ⇥ ~r

E = �
e

c
~v ~A = �

e

2c
~v · ~B ⇥ ~r = �

e

2c
~B · ~r ⇥ ~v

~L = m~r ⇥ ~v

E = �
e

2mc
~L ~B = �~µ ~B

~µ =
e

2mc
~L

~~~
L

z

= ~~~ l
z

, l
z

= 0,±1, . . . ,±l

µ
z

=
e~~~
2mc

l
z

~S = ~~~~s
s
z

~µ = g
e~~~
2mc

~s

g = 2

a =
g � 2

2

~!spin 1/2 = �g
e

2mc
~B

1

To get a very rough estimate for the light quarks u, d, s let us use a constituent mass of 300 MeV for
mq . This gives aHLbL(u, d, s) = 6.4 × 10−10. QCD tells us that the quark loop should be accurate
in describing large virtual momenta, ki " ΛQCD, i.e. short–distances. What is certainly missing
in this constituent quark loop estimate, however, is the low–momenta piece dominated by a neutral
pion–exchange in the light–by–light scattering. Adding up this contribution, discussed in more detail
below, approximately doubles the estimate to aHLbL ≈ 12× 10−10. While the ballpark of the effect is
given by this rough estimate, a more refined analysis is needed to get its magnitude and evaluate the
accuracy. Details and comparison of different contributions will be discussed below, but it is already
interesting to point out that all existing calculations fall into a range:

aHLbL = (11 ± 4) × 10−10 , (7)

compatible with this rough estimate. The dispersion of the aHLbL results in the literature is not too
bad when compared with the present experimental accuracy of 6.3×10−10. However the proposed new
gµ−2 experiment sets a goal of 1.4 × 10−10 for the error, which calls for a considerable improvement
in the theoretical calculations as well. We believe that theory is up to this challenge; a further use of
theoretical and experimental constraints could result in reaching such accuracy soon enough.

The history of the evaluation of the hadronic light–by–light scattering contribution is a long one
which can be found in the successive review articles on the subject. In fact, but for the sign error in
the neutral pion exchange discovered in 2002 [1, 2], the theoretical predictions for aHLbL have been
relatively stable over more than ten years.

Here we are interested in highlighting the generic properties of QCD relevant to the evaluation of
Eq. (4), as well as their connection with the most recent model dependent estimates which have been
made so far.

2. QCD in the Large Nc and Chiral Limits

For the light quark components in the electromagnetic current (q = u , d , s) the integration of the
light–by–light scattering over virtual momenta in Eq. (4) is convergent at characteristic hadronic
scales. We choose the mass of the ρ meson mρ to represent that scale. Of course, hadronic physics
at such momenta is non–perturbative and the first question to address is what theoretical parameters
can be used to define an expansion. Two possibilities are: the large number of colors, 1/Nc % 1, and
the smallness of the chiral symmetry breaking, m2

π/m2
ρ % 1. Their relevance can be seen from the

expansion of aHLbL as a power series in these parameters,

aHLbL ∼
(α

π

)3 m2
µ

m2
ρ

[

c1 Nc + c2
m2

ρ

m2
π

+ c3 + O(1/Nc)
]

, (8)

where mπ > mµ is implied. Only the power dependencies are shown; possible chiral logarithms,
ln(mρ/mπ), are included into the coefficients ci.

Terms leading in the large Nc limit

The first term, linear in Nc , comes from the one–particle exchange of a meson M in the HLbL
amplitude, see Fig. 2(a). In principle, the meson M is any neutral, C–even meson. In particular this
includes pseudoscalar mesons π0, η, η′; scalars f0, a0; vectors π0

1 ; pseudovectors a0
1, f1, f∗

1 ; spin 2
tensor and pseudotensor mesons f2, a2, η2, π2 .

The neutral pion exchange is special because of the Goldstone nature of the pion; its mass is much
smaller than the hadronic scale mρ. In aHLbL(π0) this leads to an additional enhancement by two
powers of a chiral logarithm [2],

aHLbL(π0) =
(α

π

)3
Nc

m2
µNc

48π2F 2
π

[

ln2 mρ

mπ
+ O

(

ln
mρ

mπ

)

+ O(1)
]

. (9)

Here the π0γγ coupling is fixed by the Adler–Bell–Jackiw anomaly in terms of the pion decay constant
Fπ ≈ 92 MeV. This constant is O

(√
Nc

)

, therefore Nc/F 2
π behaves as a constant in the large–Nc

3
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Off-shell Form Factors  Nyffeler, Jeherlehner

  OPE constraints

3

in πγ∗γ∗ form factor, derived long ago in Ref.[4], were not
utilized previously. Accounting for these constraints, also
leads to the increase in the result. As a consequence, the
central value of the pion pole contribution to aµ increases
by approximately 20 × 10−11. Similar increases occur
for other pseudoscalar (η, η′) and pseudovector channels
(a1, f1, f∗

1 ).
Unfortunately, the constraints on all, but π0, ex-

changes are not very restrictive; because of that we can-
not claim significant reduction in the theoretical uncer-
tainty of hadronic light-by-light scattering contribution
to aµ. Nevertheless, imposing all the constraints from
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Combining Eqs.(3-6), we write the the light-by-light amplitude Aµ1µ2µ3γδ for q2
1 ≈ q2

2 " q2
3 in the following form:

Aµ1µ2µ3γδf
γδ =

8

q̂2
εµ1µ2δρq̂

δ
∑

a=3,8,0

W (a)
{

w(a)
L (q2

3) qρ
3qσ

3 f̃σµ3
+ w(a)

T (q2
3)

(

−q2
3 f̃

ρ
µ3

+q3µ3
qσ
3 f̃ρ

σ−qρ
3q

σ
3 f̃σµ3

)}

+ · · · , (10)

where no hierarchy between q2
3 and Λ2

QCD is assumed.

The weights W (a) are defined as

W (a) =

(

Tr [λaQ̂2]
)2

Tr [λ2
a]Tr [Q̂4]

; (11)

W (3) =
1

4
, W (8) =

1

12
, W (0) =

2

3
.

In the limit q2
3 " Λ2

QCD, Eq.(10) can be simplified us-
ing the asymptotic expressions Eq.(7) for the invariant

functions w(a)
L,T . Convoluting the tensor amplitude with

the photon polarization vectors and analytically contin-
uing to Euclidean space, we arrive at:

A=
4

q2
3 q̂2

{f2f̃1}{f̃f3}−
4

q2
3 q̂4

(

{q2f2f̃1f̃f3q3}

+{q1f1f̃2f̃ f3q3}+
q2
1 + q2

2

4
{f2f̃1}{f̃f3}

)

+· · ·. (12)

Here, fµν
i = qµ

i εν
i − qν

i εµ
i are the field strength tensors,

the braces denote either traces of products of the matrices
fµν

i or their convolutions with vectors qi.
In Eq.(12) and in the remainder of the paper, we use

Euclidean notations instead of Minkowski ones used be-

fore. The continuation to Euclidean space mostly con-
cerns the change in sign for all q2

i and the overall change
in sign for the amplitude A, since it involves the product
of two Levi-Cevita tensors. The result can be verified
by comparison with the direct computation of the quark
box diagram, for arbitrary q2

1−3, presented in Appendix
I. There we show that the amplitude can be described
in terms of nineteen independent tensor structures and
five independent form-factors. In what follows, we mostly
deal with the approximate form of the amplitude Eq.(12),
but we make occasional references to general expression
in Appendix I.

C. The model

Two different terms in Eq.(10) can be identified with
exchanges of the pseudoscalar (pseudovector) mesons

for the functions w(a)
L,T (q2

3). Extrapolating Eq.(12) from

q2
1,2 " Λ2

QCD to arbitrary q2
1,2, we arrive at the following

model:

A=APS + APV + permutations, (13)

where

APS =
∑

a=3,8,0

W (a)φ(a)
L (q2

1 , q
2
2)w(a)

L (q2
3){f2f̃1}{f̃f3}, (14)

APV =
∑

a=3,8,0

W (a)φ(a)
T (q2

1 , q
2
2)w(a)

T (q2
3)

(

{q2f2f̃1f̃ f3q3}+{q1f1f̃2f̃f3q3}+
q2
1 + q2

2

4
{f2f̃1}{f̃f3}

)

. (15)

The form factors φ(a)
L,T (q2

1 , q2
2) account for the dependence

of the amplitude on q2
1,2. Pictorially (see Fig.2b), these

form factors can be associated with the interaction vertex
for the two virtual photons on the left hand side, whereas
the meson propagator and the interaction vertex on the
right hand side form the triangle amplitude described by

the functions w(a)
L,T (q2

3). In the next Sections we intro-
duce models for these functions consistent with the short
distance behavior of the light-by-light scattering ampli-
tude.

Note that our model does not include explicit ex-
changes of vector or scalar mesons. This is a consequence
of the fact that, to leading order, the OPE of the two

vector currents produces the axial vector current only.
However, the vector mesons are present in our model im-
plicitly, through the momentum dependence of the form

factors φ(a)
L,T as well as the transversal functions w(a)

T .

III. CONSTRAINTS ON THE PSEUDOSCALAR
EXCHANGE

The π0 exchange provides the largest fraction of the
hadronic light-by-light scattering contribution to aµ. It
is therefore appropriate to scrutinize this contribution
as much as possible and ensure that it satisfies all the

means that the bulk of the contribution does not come from small virtual momenta ki and, therefore,
chiral perturbation theory should not be applied. In other words, the term c3 in Eq. (8) with no chiral
enhancement is comparable with c2(m2

ρ/m2
π). It means that loops with heavier mesons should also

be included.
Breaking of the chiral perturbation theory looks surprising at first sight. Indeed, the inverse chiral

parameter m2
ρ/m2

π ≈ 30 is much larger than Nc = 3. What happens is that the leading terms in the

chiral expansion are numerically suppressed, which makes chiral corrections governed not by m2
π/m2

ρ

but rather by ≈ 40 m2
π/m2

ρ . This can be checked analytically in the case of the HVP contribution

to the muon anomaly. The charged pion loop is also enhanced in this case by a factor m2
ρ/m2

π but

the relative chiral correction due to the pion electromagnetic radius (evaluated with a cutoff at m2
ρ in

the ππ spectral function) is ∼ 40 m2
π/m2

ρ ln(mρ/2mπ). Of course, if the pion mass (together with
the muon mass) would be, say, 5 times smaller than in our real world, the charged pion–loop would
dominate both in the HVP and the HLbL contributions to the muon anomalous magnetic moment.

In concluding this Section, we see that the 1/Nc expansion works reasonably well, so one can use
one–particle exchanges for the HLbL amplitude. On the other hand, chiral enhancement factors are
unreliable, so we cannot limit ourselves to the lightest Goldstone–like states, and this is the case both
for the leading and next–to–leading order in the 1/Nc expansion.

3. Short–Distance QCD Constraints.

The most recent calculations of aHLbL in the literature [1, 6, 8, 9] are all compatible with the QCD
chiral constraints and large–Nc limit discussed above. They all incorporate the π0–exchange contri-
bution modulated by π0γ∗γ∗ form factors F(k2

i , k2
j ), correctly normalized to the π0 → γγ decay

width. They differ, however, in the shape of the form factors, originating in different assumptions:
vector meson dominance (VMD) in a specific form of Hidden Gauge Symmetry (HGS) in Refs. [4, 5, 6];
a different form of VMD in the extended Nambu–Jona-Lasinio model (ENJL) in Ref. [7, 8]; large–Nc

models in Refs. [1, 9]; and on whether or not they satisfy the particular operator product expansion
(OPE) constraint discussed in Ref. [9], upon which we next comment.

Let us consider a specific kinematic configuration of the virtual photon momenta k1, k2, k3 in
the Euclidean domain. In the limit q = 0 these momenta form a triangle, k1 + k2 + k3 = 0,
and we consider the configuration where one side of the triangle is much shorter than the others,
k2
1 ≈ k2

2 $ k2
3 . When k2

1 ≈ k2
2 $ m2

ρ we can apply the known operator product expansion for the
product of two electromagnetic currents carrying hard moments k1 and k2,

∫

d4x1

∫

d4x2 e−ik1·x1−ik2·x2 jν(x1) jρ(x2) =
2

k̂2
ενρδγ k̂δ

∫

d4z e−ik3·z jγ
5 (z) + O

(
1

k̂3

)

. (10)

Here jγ
5 =

∑

q Q2
q q̄γγγ5q is the axial current where different flavors are weighted by squares of their

electric charges and k̂ = (k1 − k2)/2 ≈ k1 ≈ −k2 . As illustrated in Fig. 3 this OPE reduces the
HLbL amplitude, in the special kinematics under consideration, to the AVV triangle amplitude.

q 0 q 0

γ γγ 5H

Figure 3: OPE relation between the HLbL scattering and the AVV triangle amplitude.

There are a few things we can learn from the OPE relation in Eq. (10). The first one is that the
pseudoscalar and pseudovector meson exchanges are dominant at large k1,2. Indeed, only 0− and
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in πγ∗γ∗ form factor, derived long ago in Ref.[4], were not
utilized previously. Accounting for these constraints, also
leads to the increase in the result. As a consequence, the
central value of the pion pole contribution to aµ increases
by approximately 20 × 10−11. Similar increases occur
for other pseudoscalar (η, η′) and pseudovector channels
(a1, f1, f∗

1 ).
Unfortunately, the constraints on all, but π0, ex-

changes are not very restrictive; because of that we can-
not claim significant reduction in the theoretical uncer-
tainty of hadronic light-by-light scattering contribution
to aµ. Nevertheless, imposing all the constraints from
the short-distance QCD, we arrive at albl

µ = 136(25)×−11

which is approximately 50 per cent larger than the exist-
ing estimates [5, 6, 7, 8].

The rest of the paper is organized as follows. In the
next Section we discuss the constraints coming from the
short-distance QCD and a minimal model for hadronic
contributions to albl

µ . We consider the pseudoscalar and
the pseudovector exchanges in Sections III and IV, re-
spectively. In Section V we briefly discuss the O(N0

c )
pion box contribution to albl

µ . We present our conclusions
in Section VI. Additional formulas are given in Appen-

dices.

II. SHORT-DISTANCE QCD CONSTRAINTS
AND HADRONIC MODEL

In this Section we describe the constraints coming
from the short-distance QCD and formulate the hadronic
model that satisfies these constraints.

A. Kinematics

We begin with the kinematics. The light-by-light scat-
tering amplitude involves four photons with momenta qi

and the polarization vectors εi. We take the photon mo-
menta to be incoming,

∑

qi = 0. The first three photons
are virtual, while the fourth one represents the external
magnetic field and can be regarded as a real photon with
the vanishingly small momentum q4. The amplitude M
is defined as

M = α2Nc Tr [Q̂4]A = α2Nc Tr [Q̂4]Aµ1µ2µ3γδε
µ1

1 εµ2

2 εµ3

3 fγδ

= −e3

∫

d4xd4y e−iq1x−iq2y εµ1

1 εµ2

2 εµ3

3 〈0|T {jµ1
(x) jµ2

(y) jµ3
(0)} |γ〉, (2)

where jµ is the hadronic electromagnetic current, jµ =

q̄ Q̂γµq, written in terms of the three quark flavors q =
{u, d, s} with Q̂ being the 3× 3 diagonal matrix of quark
electric charges. In addition, fγδ = qγ

4 εδ
4 − qδ

4ε
γ
4 denotes

the field strength tensor of the soft photon; the light-by-
light scattering amplitude is proportional to this tensor
due to gauge invariance. Since M is linear in the small
momentum q4, for the purpose of computing the light-by-
light scattering contribution to aµ, we can set q4 = 0 in
the tensor amplitude Aµ1µ2µ3γδ and calculate it assuming
that q1 +q2 +q3 = 0 for the virtual photons. Because the
momenta q1, q2, q3 form a triangle, there are just three
independent Lorentz invariant variables; we choose them
to be the virtualities of the photons q2

1−3.

In general, the light-by-light scattering amplitude is
a complicated function of photon’s virtualities. How-
ever, there are only two distinct kinematic regimes in
the light-by-light scattering amplitudes: the Euclidean
momenta of the three photons are comparable in mag-
nitude q2

1 ∼ q2
2 ∼ q2

3 , or one of the momenta is much
smaller than the other two. The second limit can be
analyzed in a very simple fashion using the OPE of the
light-by-light scattering. Also, this limit is of importance
because it helps us to identify the pole-like structures in

the OPE amplitudes and in this way connect the OPE
to phenomenological models.

B. OPE and triangle amplitude

Since the light-by-light scattering amplitude is sym-
metric with respect to photon permutations, we can
study the second limit assuming that q2

1 ≈ q2
2 ' q2

3 .
In this kinematic regime, we begin with the well-known
OPE (see e.g. [9]) for the product of two electromagnetic
currents that carry the largest momenta q1, q2,

i

∫

d4xd4y e−iq1x−iq2y T {jµ1
(x), jµ2

(y)} =

∫

d4z e−i(q1+q2)z 2i

q̂2
εµ1µ2δρ q̂δjρ

5 (z) + · · · . (3)

Here, jρ
5 = q̄ Q̂2γργ5 q is the axial current, where different

flavors enter with weights proportional to squares of their
electric charges and q̂ = (q1 − q2)/2 ≈ q1 ≈ −q2 . We
retain only the leading (in the limit of large Euclidean q̂)
term in the OPE associated with the axial current jρ

5 ; the
ellipsis in Eq.(3) stands for subleading terms suppressed
by powers of ΛQCD/q̂. The momentum q1 + q2 = −q3

5

Combining Eqs.(3-6), we write the the light-by-light amplitude Aµ1µ2µ3γδ for q2
1 ≈ q2

2 " q2
3 in the following form:

Aµ1µ2µ3γδf
γδ =

8

q̂2
εµ1µ2δρq̂

δ
∑

a=3,8,0

W (a)
{

w(a)
L (q2

3) qρ
3qσ

3 f̃σµ3
+ w(a)

T (q2
3)

(

−q2
3 f̃

ρ
µ3

+q3µ3
qσ
3 f̃ρ

σ−qρ
3q

σ
3 f̃σµ3

)}

+ · · · , (10)

where no hierarchy between q2
3 and Λ2

QCD is assumed.

The weights W (a) are defined as

W (a) =

(

Tr [λaQ̂2]
)2

Tr [λ2
a]Tr [Q̂4]

; (11)

W (3) =
1

4
, W (8) =

1

12
, W (0) =

2

3
.

In the limit q2
3 " Λ2

QCD, Eq.(10) can be simplified us-
ing the asymptotic expressions Eq.(7) for the invariant

functions w(a)
L,T . Convoluting the tensor amplitude with

the photon polarization vectors and analytically contin-
uing to Euclidean space, we arrive at:

A=
4

q2
3 q̂2

{f2f̃1}{f̃f3}−
4

q2
3 q̂4

(

{q2f2f̃1f̃f3q3}

+{q1f1f̃2f̃ f3q3}+
q2
1 + q2

2

4
{f2f̃1}{f̃f3}

)

+· · ·. (12)

Here, fµν
i = qµ

i εν
i − qν

i εµ
i are the field strength tensors,

the braces denote either traces of products of the matrices
fµν

i or their convolutions with vectors qi.
In Eq.(12) and in the remainder of the paper, we use

Euclidean notations instead of Minkowski ones used be-

fore. The continuation to Euclidean space mostly con-
cerns the change in sign for all q2

i and the overall change
in sign for the amplitude A, since it involves the product
of two Levi-Cevita tensors. The result can be verified
by comparison with the direct computation of the quark
box diagram, for arbitrary q2

1−3, presented in Appendix
I. There we show that the amplitude can be described
in terms of nineteen independent tensor structures and
five independent form-factors. In what follows, we mostly
deal with the approximate form of the amplitude Eq.(12),
but we make occasional references to general expression
in Appendix I.

C. The model

Two different terms in Eq.(10) can be identified with
exchanges of the pseudoscalar (pseudovector) mesons

for the functions w(a)
L,T (q2

3). Extrapolating Eq.(12) from

q2
1,2 " Λ2

QCD to arbitrary q2
1,2, we arrive at the following

model:

A=APS + APV + permutations, (13)

where

APS =
∑

a=3,8,0

W (a)φ(a)
L (q2

1 , q
2
2)w(a)

L (q2
3){f2f̃1}{f̃f3}, (14)

APV =
∑

a=3,8,0

W (a)φ(a)
T (q2

1 , q
2
2)w(a)

T (q2
3)

(

{q2f2f̃1f̃ f3q3}+{q1f1f̃2f̃f3q3}+
q2
1 + q2

2

4
{f2f̃1}{f̃f3}

)

. (15)

The form factors φ(a)
L,T (q2

1 , q2
2) account for the dependence

of the amplitude on q2
1,2. Pictorially (see Fig.2b), these

form factors can be associated with the interaction vertex
for the two virtual photons on the left hand side, whereas
the meson propagator and the interaction vertex on the
right hand side form the triangle amplitude described by

the functions w(a)
L,T (q2

3). In the next Sections we intro-
duce models for these functions consistent with the short
distance behavior of the light-by-light scattering ampli-
tude.

Note that our model does not include explicit ex-
changes of vector or scalar mesons. This is a consequence
of the fact that, to leading order, the OPE of the two

vector currents produces the axial vector current only.
However, the vector mesons are present in our model im-
plicitly, through the momentum dependence of the form

factors φ(a)
L,T as well as the transversal functions w(a)

T .

III. CONSTRAINTS ON THE PSEUDOSCALAR
EXCHANGE

The π0 exchange provides the largest fraction of the
hadronic light-by-light scattering contribution to aµ. It
is therefore appropriate to scrutinize this contribution
as much as possible and ensure that it satisfies all the
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A=APS + APV + permutations, (13)

where

APS =
∑

a=3,8,0

W (a)φ(a)
L (q2

1 , q
2
2)w(a)

L (q2
3){f2f̃1}{f̃f3}, (14)

APV =
∑

a=3,8,0

W (a)φ(a)
T (q2

1 , q
2
2)w(a)

T (q2
3)

(

{q2f2f̃1f̃ f3q3}+{q1f1f̃2f̃f3q3}+
q2
1 + q2

2

4
{f2f̃1}{f̃f3}

)

. (15)

The form factors φ(a)
L,T (q2

1 , q2
2) account for the dependence

of the amplitude on q2
1,2. Pictorially (see Fig.2b), these

form factors can be associated with the interaction vertex
for the two virtual photons on the left hand side, whereas
the meson propagator and the interaction vertex on the
right hand side form the triangle amplitude described by

the functions w(a)
L,T (q2

3). In the next Sections we intro-
duce models for these functions consistent with the short
distance behavior of the light-by-light scattering ampli-
tude.

Note that our model does not include explicit ex-
changes of vector or scalar mesons. This is a consequence
of the fact that, to leading order, the OPE of the two

vector currents produces the axial vector current only.
However, the vector mesons are present in our model im-
plicitly, through the momentum dependence of the form

factors φ(a)
L,T as well as the transversal functions w(a)

T .

III. CONSTRAINTS ON THE PSEUDOSCALAR
EXCHANGE

The π0 exchange provides the largest fraction of the
hadronic light-by-light scattering contribution to aµ. It
is therefore appropriate to scrutinize this contribution
as much as possible and ensure that it satisfies all the

3

in πγ∗γ∗ form factor, derived long ago in Ref.[4], were not
utilized previously. Accounting for these constraints, also
leads to the increase in the result. As a consequence, the
central value of the pion pole contribution to aµ increases
by approximately 20 × 10−11. Similar increases occur
for other pseudoscalar (η, η′) and pseudovector channels
(a1, f1, f∗

1 ).
Unfortunately, the constraints on all, but π0, ex-

changes are not very restrictive; because of that we can-
not claim significant reduction in the theoretical uncer-
tainty of hadronic light-by-light scattering contribution
to aµ. Nevertheless, imposing all the constraints from
the short-distance QCD, we arrive at albl

µ = 136(25)×−11

which is approximately 50 per cent larger than the exist-
ing estimates [5, 6, 7, 8].

The rest of the paper is organized as follows. In the
next Section we discuss the constraints coming from the
short-distance QCD and a minimal model for hadronic
contributions to albl

µ . We consider the pseudoscalar and
the pseudovector exchanges in Sections III and IV, re-
spectively. In Section V we briefly discuss the O(N0

c )
pion box contribution to albl

µ . We present our conclusions
in Section VI. Additional formulas are given in Appen-

dices.

II. SHORT-DISTANCE QCD CONSTRAINTS
AND HADRONIC MODEL

In this Section we describe the constraints coming
from the short-distance QCD and formulate the hadronic
model that satisfies these constraints.

A. Kinematics

We begin with the kinematics. The light-by-light scat-
tering amplitude involves four photons with momenta qi

and the polarization vectors εi. We take the photon mo-
menta to be incoming,

∑

qi = 0. The first three photons
are virtual, while the fourth one represents the external
magnetic field and can be regarded as a real photon with
the vanishingly small momentum q4. The amplitude M
is defined as

M = α2Nc Tr [Q̂4]A = α2Nc Tr [Q̂4]Aµ1µ2µ3γδε
µ1

1 εµ2

2 εµ3

3 fγδ

= −e3

∫

d4xd4y e−iq1x−iq2y εµ1

1 εµ2

2 εµ3

3 〈0|T {jµ1
(x) jµ2

(y) jµ3
(0)} |γ〉, (2)

where jµ is the hadronic electromagnetic current, jµ =

q̄ Q̂γµq, written in terms of the three quark flavors q =
{u, d, s} with Q̂ being the 3× 3 diagonal matrix of quark
electric charges. In addition, fγδ = qγ

4 εδ
4 − qδ

4ε
γ
4 denotes

the field strength tensor of the soft photon; the light-by-
light scattering amplitude is proportional to this tensor
due to gauge invariance. Since M is linear in the small
momentum q4, for the purpose of computing the light-by-
light scattering contribution to aµ, we can set q4 = 0 in
the tensor amplitude Aµ1µ2µ3γδ and calculate it assuming
that q1 +q2 +q3 = 0 for the virtual photons. Because the
momenta q1, q2, q3 form a triangle, there are just three
independent Lorentz invariant variables; we choose them
to be the virtualities of the photons q2

1−3.

In general, the light-by-light scattering amplitude is
a complicated function of photon’s virtualities. How-
ever, there are only two distinct kinematic regimes in
the light-by-light scattering amplitudes: the Euclidean
momenta of the three photons are comparable in mag-
nitude q2

1 ∼ q2
2 ∼ q2

3 , or one of the momenta is much
smaller than the other two. The second limit can be
analyzed in a very simple fashion using the OPE of the
light-by-light scattering. Also, this limit is of importance
because it helps us to identify the pole-like structures in

the OPE amplitudes and in this way connect the OPE
to phenomenological models.

B. OPE and triangle amplitude

Since the light-by-light scattering amplitude is sym-
metric with respect to photon permutations, we can
study the second limit assuming that q2

1 ≈ q2
2 ' q2

3 .
In this kinematic regime, we begin with the well-known
OPE (see e.g. [9]) for the product of two electromagnetic
currents that carry the largest momenta q1, q2,

i

∫

d4xd4y e−iq1x−iq2y T {jµ1
(x), jµ2

(y)} =

∫

d4z e−i(q1+q2)z 2i

q̂2
εµ1µ2δρ q̂δjρ

5 (z) + · · · . (3)

Here, jρ
5 = q̄ Q̂2γργ5 q is the axial current, where different

flavors enter with weights proportional to squares of their
electric charges and q̂ = (q1 − q2)/2 ≈ q1 ≈ −q2 . We
retain only the leading (in the limit of large Euclidean q̂)
term in the OPE associated with the axial current jρ

5 ; the
ellipsis in Eq.(3) stands for subleading terms suppressed
by powers of ΛQCD/q̂. The momentum q1 + q2 = −q3

4

flowing through j5
ρ is assumed to be much smaller than

q̂. We note in passing that Eq.(3) has been applied earlier
in various situations; for example, the matrix element of
Eq.(3) between the pion and the vacuum states gives the
asymptotic behavior of the π0γ∗γ∗ amplitude at large
photon virtualities [4].

For the purpose of further discussion it is convenient
to present the current j5ρ as a linear combination of the

isovector, j(3)
5ρ = q̄λ3γργ5q, hypercharge, j(8)

5ρ = q̄λ8γργ5q,

and the SU(3) singlet, j(0)
5ρ = q̄γργ5q, currents,

j5ρ =
∑

a=3,8,0

Tr [λaQ̂2]

Tr [λ2
a]

j(a)
5ρ , (4)

where λ0 is the unity matrix.
Once the dependence on the largest momenta q1,2 is

factored out, the next step is to find the dependence of
the light-by-light scattering amplitude on the momentum

q3. This dependence is given by the amplitudes T (a)
γρ

that involve axial currents j(a)
5ρ and two electromagnetic

currents, one with momentum q3 and the other one (the
external magnetic field) with the vanishing momentum

T (a)
µ3ρ = i 〈0|

∫

d4z eiq3zT {j(a)
5ρ (z) jµ3

(0)}|γ〉. (5)

The triangle amplitudes for such kinematics were con-
sidered recently in [11]. It is shown in that reference that

T (a)
γρ can be written through two independent amplitudes,

T (a)
µ3ρ = −

ie NcTr [λaQ̂2]

4π2

{

w(a)
L (q2

3) q3ρq
σ
3 f̃σµ3

+

+w(a)
T (q2

3)
(

−q2
3f̃µ3ρ+q3µ3

qσ
3 f̃σρ−q3ρq

σ
3 f̃σµ3

)}

. (6)

The first (second) amplitude is related to the longitudinal
(transversal) part of the axial current, respectively. In
terms of hadrons, the invariant function wL(T ) describes
the exchanges of the pseudoscalar (pseudovector) mesons.

In perturbation theory wL,T are defined by the famous
triangle diagram. For massless quarks, we obtain:

w(a)
L (q2) = 2w(a)

T (q2) = −
2

q2
. (7)

An appearance of the longitudinal part is the signa-
ture of the axial Adler-Bell-Jackiw (ABJ) anomaly [10].
Although the perturbation theory is only reliable for
q2 $ Λ2

QCD, where it coincides with the leading term
of the OPE for the time-ordered product of the axial and
electromagnetic currents, the expressions for longitudinal

functions w(3,8)
L given in Eq.(7) are exact QCD results in

the chiral limit mq = 0 for nonsinglet axial currents. The
fact that there are no perturbative [12] and nonpertur-
bative [13] corrections to the axial anomaly implies that

the pole behavior of w(3,8)
L in Eq.(7) is correct all the

way down to small q2, where the poles are associated

with Goldstone pseudoscalar mesons, π0 in w(3)
L and η in

w(8)
L .
Equations (6) and (7) allow us to derive the coupling

of the π0 meson to photons. To this end, consider the

isovector part of the triangle amplitude T (3)
γρ . The residue

at q2 = 0, corresponding to the π0 pole, is the product
of two matrix elements,

〈0|j(3)
5ρ |π0〉 = 2iFπ qρ , 〈π0|jµ3

|γ〉 = −4egπγγqσ f̃σµ3
.(8)

Comparing with Eqs.(6), (7) we derive the well-known
result [10] for πγγ coupling:

gπγγ =
NcTr [λ3Q̂2]

16π2 Fπ
. (9)

In a similar way, the gηγγ coupling in the chiral limit can
be derived, if needed.

The absence of perturbative and non-perturbative cor-
rections and therefore the possibility to use the OPE
expressions for vanishing values of q2 is unique for the
longitudinal part of nonsinglet axial currents.1 For the
transversal functions wT as well as for the singlet longi-

tudinal function w(0)
L , there are higher order terms in the

OPE that, upon summation, generate mass terms that
shift the pole position 1/q2 → 1/(q2 − m2). We use this
modification of the pole-like terms for each channel in
what follows. The lightest pseudovector mesons are the
a1(1260), f1(1290) and f∗

1 (1420) mesons. For the singlet

axial current the pole in w(0)
L is shifted to m2

η′ .
Consider a triangle amplitude for any isospin channel

in the limit of large q2, where the OPE and the per-
turbation theory are applicable and Eq.(7) is valid. An
important consequence of this equation is that triangle
amplitudes are not suppressed for such values of q2. In
terms of hadrons it means that no form factor is present
in the hγ∗γ interaction vertex where the real photon is
soft (external magnetic field). This is in clear contradic-
tion with the common practice [5, 7, 8] when, for π0 ex-
change, the form factor Fπγ∗γ(q2, 0) is introduced. Such
transition form factor has to be present when one of the
photons is virtual, the other photon is on the mass shell
and the pion is on the mass shell as well. However, this is
not the kinematics that corresponds to the triangle and
the light-by-light scattering amplitudes, relevant for aµ

computation, where the pion virtuality is the same as
the virtuality of one of the photons. The absence of the
suppression is also consistent with the dispersion repre-
sentation of the amplitude since the imaginary part is
nonvanishing only at q2 = 0 in the chiral limit.

1 More precisely, perturbative corrections to w(3,8)
T

are also absent
as shown in Ref.[14].
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Compare this now with the meson exchange near the 
meson pole. For the pion pole we have

2

pendent. This feature leads to major problems in esti-
mating both the central value and the theoretical uncer-
tainty. Given the fact that at low energies the physics of
light-by-light scattering is non-perturbative, it is näıve to
expect the fully model-independent solution. The satis-
factory solution should involve a mixture of both model-
dependent and first-principles based considerations in
such a way that the uncertainty caused by the model
dependence can be minimized and controlled.

To quantify the quality of the low-energy hadronic
model, we need a theoretical parameter. Since the per-
turbation theory is not an option, we must look for the
parameter other then the QCD coupling constant. The
two possibilities are the smallness of the chiral symme-
try breaking and the large number of colors Nc. The
relevance of these parameters can be seen from the para-
metrical expression for albl

µ ,

albl
µ ∼

(α

π

)3
[

c1
m2

µ

m2
π

+ c2Nc

m2
µ

Λ2
QCD

]

, (1)

where it is assumed that mπ > mµ. Only the power
dependence on m2

π is shown; possible chiral logarithms
are included into the coefficients c1,2. The first, chirally
enhanced, term is due to the loops of charged pions in
the light-by-light scattering, Fig. 2a. The second, Nc-
enhanced, term is due to exchanges of neutral pion or
heavier resonances, Fig. 2b.

!0, a 1
!+

a b

FIG. 2: Hadronic contributions to the light-by-light scatter-
ing: (a) charged pion loop, (b) exchange of neutral pion and
other resonances.

At first sight, it seems natural to expect the chiral pa-
rameter m2

π/(4πfπ)2 to be a better expansion parameter
for albl

µ . However, a more careful analysis indicates that
things can, and perhaps do, work differently. In partic-
ular, in all hadronic models used to estimate albl

µ , the
chirally enhanced two-pion contribution is always much
smaller than the color enhanced contribution. We present
the “anatomy” of the chirally enhanced O(N0

c ) contribu-
tion in the last Section of this paper where we argue that
this smallness may not be accidental.

Moreover, a similar example is provided by the
hadronic vacuum polarization contribution to aµ. There,
the chirally enhanced two-pion contribution gives approx-
imately 3 × 10−9 which should be compared with the
Nc-enhanced contribution due to the ρ-meson that gives

approximately 50 × 10−9. Although we do not have a
clear understanding of why the chirally enhanced terms
are subdominant to such an extent, the above arguments
suggest that we should accept the dominance of the large-
Nc expansion over the chiral expansion as the working
hypothesis. The special feature of the large-Nc limit is
that scattering amplitudes in any particular channel are
given by infinite sums of narrow resonances. This helps in
constructing the model but is clearly insufficient; we need
further constraints to select among prospective models.

Such constraints come from the knowledge of short-
distance behavior of the light-by-light scattering ampli-
tude, governed by QCD. The asymptotics of this ampli-
tude at large Euclidean photon momenta is derived from
the operator product expansion (OPE). The leading term
in this OPE comes from the quark box diagram enhanced
by large Nc. This shows a consistency of the OPE con-
straints with the large-Nc limit. Therefore, we require
an acceptable large-Nc hadronic model, extrapolated to
large Euclidean photon momenta, to match the perturba-
tive light-by-light scattering amplitude. We find that the
minimal large-Nc model which satisfies this criterion in-
cludes exchanges of the pseudoscalar 0− mesons π0, η, η′

and the the pseudovector 1+ resonances a1, f1, f∗
1 . It

is important to emphasize at this point that the model
with a finite number of resonances is consistent with the
short-distance constraints for albl

µ ; it is known that this
is not always the case ( see [3] for a recent discussion).

The short-distance QCD constraints are most restric-
tive in the pseudoscalar isovector channel. In a special
kinematic limit, where invariant masses of two virtual
photons are much larger than the invariant mass of the
third photon, this channel is completely saturated by the
neutral pion. The saturation is complete in the sense that
it works for arbitrary small invariant mass of the third
virtual photon, in spite of the fact that, in general, the
OPE applies only when that mass is much larger than
ΛQCD.

This happens because in the kinematic limit described
above, the OPE relates hadronic light-by-light scatter-
ing diagram to the famous “anomalous” triangle dia-
gram with one axial and two vector currents. Because
both perturbative and non-perturbative corrections to
the anomalous triangle are absent in the limit of exact
chiral symmetry, the pion pole contribution is unambigu-
ous both at small q ∼ ΛQCD and at large q # ΛQCD

momenta. This observation connects the two regions of
momenta and provides an important constraint thereby.

In terms of the diagram in Fig. 2a, the constraint
amounts to the statement that the form factor is present
in the πγ∗γ∗ vertex if both photons are virtual but it is
absent if that vertex contains the external magnetic field.
Although the pseudoscalar channel has been the subject
of many detailed studies in the past, this constraint has
been overlooked and, as the result, the π0-pole contribu-
tion to aµ was underestimated. This is the main source
of corrections we find for the pion pole contribution.

Moreover, additional constraints on subleading terms
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possible constraints that follow from first principles.
As we discussed earlier, the longitudinal part of the tri-

angle amplitude is fixed by the ABJ anomaly. Account-
ing for explicit violation of the chiral symmetry given by
the small mass of the pion, we derive

w(3)
L (q2) =

2

q2 + m2
π

. (16)

The ABJ anomaly also fixes φ(3)
L (0, 0),

φ(3)
L (0, 0) =

Nc

4π2F 2
π

, (17)

so that the model for the pion exchange in the light-by-
light scattering amplitude takes the form,

Aπ0 = −
NcW (3)

2π2F 2
π

Fπγ∗γ∗(q2
1 , q2

2)

q2
3 + m2

π

{f2f̃1}{f̃f3}

+ permutations . (18)

The πγ∗γ∗ form factor Fπγ∗γ∗(q2
1 , q2

2) is defined as

Fπγ∗γ∗(q2
1 , q2

2) =
φ(3)

L (q2
1 , q

2
2)

φ(3)
L (0, 0)

. (19)

The comparison with the OPE constraint given by the
relevant term in Eq.(10) leads to

lim
q2"Λ2

QCD

Fπγ∗γ∗(q2, q2) =
8π2F 2

π

Nc q2
, (20)

which is the correct asymptotics indeed [4]. This means
that the neutral pion exchange in Eq.(14) saturates the
corresponding short-distance QCD constraint.

This comparison also proves our previous claim that
the form factor Fπγ∗γ(q2

3 , 0) cannot be present in the
amplitude Eq.(18); if that form factor is introduced, the
asymptotics of the light-by-light scattering amplitude be-
comes 1/q4

3, as opposed to 1/q2
3 behavior that follows

from perturbative QCD. This proof is, of course, equiva-
lent to our discussion of the triangle amplitude in Section
II.

The absence of the second form factor in the amplitude
Eq.(18) distinguishes our approach from all other calcu-
lations of the pion pole contribution to aµ that exist in
the literature. As we show below, it has a non-negligible
impact on the final numerical result for the pseudoscalar
contribution to aµ. Here we note, that the result for the
pion pole contribution is expected to increase, because
the absence of the second form factor leads to slower
convergence of the integrals over loop momenta, making
the result larger. As we show below, this is indeed what
happens.

Further constraints on the model follow from restric-
tions on the pion transition form factor Fπγ∗γ∗ that were
recently reviewed in [8]. For numerical estimates we use
their LMD+V form factor

Fπγ∗γ∗(q2
1 , q2

2) =
4π2F 2

π

Nc

q2
1q

2
2(q

2
1 + q2

2) − h2q2
1q2

2 + h5(q2
1 + q2

2) + (NcM4
1 M4

2 /4π2F 2
π )

(q2
1 + M2

1 )(q2
1 + M2

2 )(q2
2 + M2

1 )(q2
2 + M2

2 )
, (21)

where M1 = 769 MeV, M2 = 1465 MeV, h5 =
6.93 GeV4.

The parameter h2 was not determined in Ref.[8] and
we can fix it if we notice that it contributes to the 1/q4

correction to the leading asymptotics of the pion form
factor, Eq.(20). Such correction comes from the twist 4
operators in the OPE expansion of the two electromag-
netic currents Eq.(3). It was analyzed long ago in Ref.[4]
using the OPE and the QCD sum rules approaches. The
result of such an analysis implies that the coefficient of
the O(q−4) term in the asymptotics of the pion form fac-
tor is numerically small; in terms of the parametrization
Eq.(21), this means that h2 ≈ −10 GeV2 has to be cho-
sen. We use this value for numerical estimates in what
follows.

Equations (18) and (21) completely specify the model
for the pion pole contribution that we use for numerical
calculations below. Before going into that, we discuss the

sensitivity of the final result to possible modifications of
the model.

We denote the structure that multiplies {f2f̃1}{f̃f3}
in Eq.(18) as W (3)Gmod

2 (q2
3 , q

2
2 , q

2
1). Comparing the π0-

pole exchange amplitude, Eq.(18), to the full light-by-
light scattering amplitude (see Appendix I), we find that,
for asymptotically large virtualities of the photons, the
matching requires

Gmod
2 (q2

3 , q2
2 , q

2
1) = G2(q

2
3 , q

2
2 , q2

1). (22)

Consider Eq.(22) in the limit Λ2
QCD # q2

1 # q2
2 ∼ q2

3 .
It is easy to see that the left hand side in Eq.(22) develops
the 1/q2

1 behavior; from expression for G2 in Appendix
I it follows that G2(q2

2 , q2
2 , q

2
1) ≈ 1/q2

2 in such kinematic
regime. Hence, there is a mismatch between our model
and the OPE prediction.

The second option is to consider Eq.(22) in the situa-
tion when all the momenta are asymptotically large and
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Combining Eqs.(3-6), we write the the light-by-light amplitude Aµ1µ2µ3γδ for q2
1 ≈ q2

2 " q2
3 in the following form:

Aµ1µ2µ3γδf
γδ =

8

q̂2
εµ1µ2δρq̂

δ
∑

a=3,8,0

W (a)
{

w(a)
L (q2

3) qρ
3qσ

3 f̃σµ3
+ w(a)

T (q2
3)

(

−q2
3 f̃

ρ
µ3

+q3µ3
qσ
3 f̃ρ

σ−qρ
3q

σ
3 f̃σµ3

)}

+ · · · , (10)

where no hierarchy between q2
3 and Λ2

QCD is assumed.

The weights W (a) are defined as

W (a) =

(

Tr [λaQ̂2]
)2

Tr [λ2
a]Tr [Q̂4]

; (11)

W (3) =
1

4
, W (8) =

1

12
, W (0) =

2

3
.

In the limit q2
3 " Λ2

QCD, Eq.(10) can be simplified us-
ing the asymptotic expressions Eq.(7) for the invariant

functions w(a)
L,T . Convoluting the tensor amplitude with

the photon polarization vectors and analytically contin-
uing to Euclidean space, we arrive at:

A=
4

q2
3 q̂2

{f2f̃1}{f̃f3}−
4

q2
3 q̂4

(

{q2f2f̃1f̃f3q3}

+{q1f1f̃2f̃ f3q3}+
q2
1 + q2

2

4
{f2f̃1}{f̃f3}

)

+· · ·. (12)

Here, fµν
i = qµ

i εν
i − qν

i εµ
i are the field strength tensors,

the braces denote either traces of products of the matrices
fµν

i or their convolutions with vectors qi.
In Eq.(12) and in the remainder of the paper, we use

Euclidean notations instead of Minkowski ones used be-

fore. The continuation to Euclidean space mostly con-
cerns the change in sign for all q2

i and the overall change
in sign for the amplitude A, since it involves the product
of two Levi-Cevita tensors. The result can be verified
by comparison with the direct computation of the quark
box diagram, for arbitrary q2

1−3, presented in Appendix
I. There we show that the amplitude can be described
in terms of nineteen independent tensor structures and
five independent form-factors. In what follows, we mostly
deal with the approximate form of the amplitude Eq.(12),
but we make occasional references to general expression
in Appendix I.

C. The model

Two different terms in Eq.(10) can be identified with
exchanges of the pseudoscalar (pseudovector) mesons

for the functions w(a)
L,T (q2

3). Extrapolating Eq.(12) from

q2
1,2 " Λ2

QCD to arbitrary q2
1,2, we arrive at the following

model:

A=APS + APV + permutations, (13)

where

APS =
∑

a=3,8,0

W (a)φ(a)
L (q2

1 , q
2
2)w(a)

L (q2
3){f2f̃1}{f̃f3}, (14)

APV =
∑

a=3,8,0

W (a)φ(a)
T (q2

1 , q
2
2)w(a)

T (q2
3)

(

{q2f2f̃1f̃ f3q3}+{q1f1f̃2f̃f3q3}+
q2
1 + q2

2

4
{f2f̃1}{f̃f3}

)

. (15)

The form factors φ(a)
L,T (q2

1 , q2
2) account for the dependence

of the amplitude on q2
1,2. Pictorially (see Fig.2b), these

form factors can be associated with the interaction vertex
for the two virtual photons on the left hand side, whereas
the meson propagator and the interaction vertex on the
right hand side form the triangle amplitude described by

the functions w(a)
L,T (q2

3). In the next Sections we intro-
duce models for these functions consistent with the short
distance behavior of the light-by-light scattering ampli-
tude.

Note that our model does not include explicit ex-
changes of vector or scalar mesons. This is a consequence
of the fact that, to leading order, the OPE of the two

vector currents produces the axial vector current only.
However, the vector mesons are present in our model im-
plicitly, through the momentum dependence of the form

factors φ(a)
L,T as well as the transversal functions w(a)

T .

III. CONSTRAINTS ON THE PSEUDOSCALAR
EXCHANGE

The π0 exchange provides the largest fraction of the
hadronic light-by-light scattering contribution to aµ. It
is therefore appropriate to scrutinize this contribution
as much as possible and ensure that it satisfies all the

         accounts for projection to the isovector part of 
the axial current.
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which is the correct asymptotics indeed [4]. This means
that the neutral pion exchange in Eq.(14) saturates the
corresponding short-distance QCD constraint.

This comparison also proves our previous claim that
the form factor Fπγ∗γ(q2

3 , 0) cannot be present in the
amplitude Eq.(18); if that form factor is introduced, the
asymptotics of the light-by-light scattering amplitude be-
comes 1/q4

3, as opposed to 1/q2
3 behavior that follows

from perturbative QCD. This proof is, of course, equiva-
lent to our discussion of the triangle amplitude in Section
II.

The absence of the second form factor in the amplitude
Eq.(18) distinguishes our approach from all other calcu-
lations of the pion pole contribution to aµ that exist in
the literature. As we show below, it has a non-negligible
impact on the final numerical result for the pseudoscalar
contribution to aµ. Here we note, that the result for the
pion pole contribution is expected to increase, because
the absence of the second form factor leads to slower
convergence of the integrals over loop momenta, making
the result larger. As we show below, this is indeed what
happens.

Further constraints on the model follow from restric-
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recently reviewed in [8]. For numerical estimates we use
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where M1 = 769 MeV, M2 = 1465 MeV, h5 =
6.93 GeV4.

The parameter h2 was not determined in Ref.[8] and
we can fix it if we notice that it contributes to the 1/q4

correction to the leading asymptotics of the pion form
factor, Eq.(20). Such correction comes from the twist 4
operators in the OPE expansion of the two electromag-
netic currents Eq.(3). It was analyzed long ago in Ref.[4]
using the OPE and the QCD sum rules approaches. The
result of such an analysis implies that the coefficient of
the O(q−4) term in the asymptotics of the pion form fac-
tor is numerically small; in terms of the parametrization
Eq.(21), this means that h2 ≈ −10 GeV2 has to be cho-
sen. We use this value for numerical estimates in what
follows.

Equations (18) and (21) completely specify the model
for the pion pole contribution that we use for numerical
calculations below. Before going into that, we discuss the

sensitivity of the final result to possible modifications of
the model.

We denote the structure that multiplies {f2f̃1}{f̃f3}
in Eq.(18) as W (3)Gmod
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It is easy to see that the left hand side in Eq.(22) develops
the 1/q2

1 behavior; from expression for G2 in Appendix
I it follows that G2(q2
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2
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2 in such kinematic
regime. Hence, there is a mismatch between our model
and the OPE prediction.

The second option is to consider Eq.(22) in the situa-
tion when all the momenta are asymptotically large and
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The off-shell approach by Jegerlehner and Nyffeler 
implies that form factors at each vertex are functions
of all three virtualities

Fπγ∗γ∗(q2
1, q2

2; q2
3)

1. Introduction.

From a theoretical point of view the hadronic light–by–light scattering (HLbL) contribution to the
muon magnetic moment is described by the vertex function (see Fig. 1 below):

Γ(H)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

∫
d4k2

(2π)4
Π(H)

µνρσ(q, k1, k3, k2)

k2
1k2

2k2
3

γν(!p2+ !k2−mµ)−1γρ(!p1− !k1−mµ)−1γσ ,

(1)
where mµ is the muon mass and Π(H)

µνρσ(q, k1, k3, k2), with q = p2 −p1 = −k1 −k2 −k3, denotes
the off–shell photon–photon scattering amplitude induced by hadrons,

Π(H)
µνρσ(q, k1, k3, k2) =

∫

d4x1

∫

d4x2

∫

d4x3 exp[−i(k1 · x1+k2 · x2+k3 · x3)]

×〈0|T{jµ(0) jν(x1) jρ(x2) jσ(x3)}|0〉 . (2)

Here jµ is the Standard Model electromagnetic current, jµ(x) =
∑

q Qqq̄(x)γµq(x), where Qq

denotes the electric charge of quark q. The external photon with momentum q represents the magnetic
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Figure 1: Hadronic light–by–light scattering contribution.

field. We are interested in the limit q → 0 where the current conservation implies that Γ(H)
µ is linear

in q,

Γ(H)
µ = −

aHLbL

4mµ

[γµ , γν ] qν . (3)

The muon anomaly can then be extracted as follows

aHLbL =
−ie6
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λνρσ(q, k1, k3, k2)

]

q=0

× tr
{

(!p + mµ)[γµ, γλ](!p + mµ)γν(!p+ !k2 − mµ)−1γρ(!p− !k1 − mµ)−1γσ
}

.(4)

Unlike the case of the hadronic vacuum polarization (HVP) contribution, there is no direct ex-
perimental input for the hadronic light–by–light scattering (HLbL) so one has to rely on theoretical
approaches. Let us start with the massive quark loop contribution which is known analytically,

aHLbL(quark loop) =

(
α

π

)3

NcQ
4
q

{
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3

2
ζ(3) −

19

16

]

︸ ︷︷ ︸
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+ O
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q

] }

, (5)
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including virtuality of pion                   . In the vertex 
with the external magnetic field it becomes  
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The idea is that this function at large     is a constant 
different from                        . Comparing with 
asymptotics at                           we see that such 
deviation is not allowed.
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}

.(4)

Unlike the case of the hadronic vacuum polarization (HVP) contribution, there is no direct ex-
perimental input for the hadronic light–by–light scattering (HLbL) so one has to rely on theoretical
approaches. Let us start with the massive quark loop contribution which is known analytically,

aHLbL(quark loop) =

(
α

π

)3

NcQ
4
q

{
[
3

2
ζ(3) −

19

16

]

︸ ︷︷ ︸

0.62

m2
µ

m2
q

+ O

[

m4
µ

m4
q

log2
m2

µ

m2
q

] }

, (5)
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3

in πγ∗γ∗ form factor, derived long ago in Ref.[4], were not
utilized previously. Accounting for these constraints, also
leads to the increase in the result. As a consequence, the
central value of the pion pole contribution to aµ increases
by approximately 20 × 10−11. Similar increases occur
for other pseudoscalar (η, η′) and pseudovector channels
(a1, f1, f∗

1 ).
Unfortunately, the constraints on all, but π0, ex-

changes are not very restrictive; because of that we can-
not claim significant reduction in the theoretical uncer-
tainty of hadronic light-by-light scattering contribution
to aµ. Nevertheless, imposing all the constraints from
the short-distance QCD, we arrive at albl

µ = 136(25)×−11

which is approximately 50 per cent larger than the exist-
ing estimates [5, 6, 7, 8].

The rest of the paper is organized as follows. In the
next Section we discuss the constraints coming from the
short-distance QCD and a minimal model for hadronic
contributions to albl

µ . We consider the pseudoscalar and
the pseudovector exchanges in Sections III and IV, re-
spectively. In Section V we briefly discuss the O(N0

c )
pion box contribution to albl

µ . We present our conclusions
in Section VI. Additional formulas are given in Appen-

dices.

II. SHORT-DISTANCE QCD CONSTRAINTS
AND HADRONIC MODEL

In this Section we describe the constraints coming
from the short-distance QCD and formulate the hadronic
model that satisfies these constraints.

A. Kinematics

We begin with the kinematics. The light-by-light scat-
tering amplitude involves four photons with momenta qi

and the polarization vectors εi. We take the photon mo-
menta to be incoming,

∑

qi = 0. The first three photons
are virtual, while the fourth one represents the external
magnetic field and can be regarded as a real photon with
the vanishingly small momentum q4. The amplitude M
is defined as

M = α2Nc Tr [Q̂4]A = α2Nc Tr [Q̂4]Aµ1µ2µ3γδε
µ1

1 εµ2

2 εµ3

3 fγδ

= −e3

∫

d4xd4y e−iq1x−iq2y εµ1

1 εµ2

2 εµ3

3 〈0|T {jµ1
(x) jµ2

(y) jµ3
(0)} |γ〉, (2)

where jµ is the hadronic electromagnetic current, jµ =

q̄ Q̂γµq, written in terms of the three quark flavors q =
{u, d, s} with Q̂ being the 3× 3 diagonal matrix of quark
electric charges. In addition, fγδ = qγ

4 εδ
4 − qδ

4ε
γ
4 denotes

the field strength tensor of the soft photon; the light-by-
light scattering amplitude is proportional to this tensor
due to gauge invariance. Since M is linear in the small
momentum q4, for the purpose of computing the light-by-
light scattering contribution to aµ, we can set q4 = 0 in
the tensor amplitude Aµ1µ2µ3γδ and calculate it assuming
that q1 +q2 +q3 = 0 for the virtual photons. Because the
momenta q1, q2, q3 form a triangle, there are just three
independent Lorentz invariant variables; we choose them
to be the virtualities of the photons q2

1−3.

In general, the light-by-light scattering amplitude is
a complicated function of photon’s virtualities. How-
ever, there are only two distinct kinematic regimes in
the light-by-light scattering amplitudes: the Euclidean
momenta of the three photons are comparable in mag-
nitude q2

1 ∼ q2
2 ∼ q2

3 , or one of the momenta is much
smaller than the other two. The second limit can be
analyzed in a very simple fashion using the OPE of the
light-by-light scattering. Also, this limit is of importance
because it helps us to identify the pole-like structures in

the OPE amplitudes and in this way connect the OPE
to phenomenological models.

B. OPE and triangle amplitude

Since the light-by-light scattering amplitude is sym-
metric with respect to photon permutations, we can
study the second limit assuming that q2

1 ≈ q2
2 ' q2

3 .
In this kinematic regime, we begin with the well-known
OPE (see e.g. [9]) for the product of two electromagnetic
currents that carry the largest momenta q1, q2,

i

∫

d4xd4y e−iq1x−iq2y T {jµ1
(x), jµ2

(y)} =

∫

d4z e−i(q1+q2)z 2i

q̂2
εµ1µ2δρ q̂δjρ

5 (z) + · · · . (3)

Here, jρ
5 = q̄ Q̂2γργ5 q is the axial current, where different

flavors enter with weights proportional to squares of their
electric charges and q̂ = (q1 − q2)/2 ≈ q1 ≈ −q2 . We
retain only the leading (in the limit of large Euclidean q̂)
term in the OPE associated with the axial current jρ

5 ; the
ellipsis in Eq.(3) stands for subleading terms suppressed
by powers of ΛQCD/q̂. The momentum q1 + q2 = −q3

4

flowing through j5
ρ is assumed to be much smaller than

q̂. We note in passing that Eq.(3) has been applied earlier
in various situations; for example, the matrix element of
Eq.(3) between the pion and the vacuum states gives the
asymptotic behavior of the π0γ∗γ∗ amplitude at large
photon virtualities [4].

For the purpose of further discussion it is convenient
to present the current j5ρ as a linear combination of the

isovector, j(3)
5ρ = q̄λ3γργ5q, hypercharge, j(8)

5ρ = q̄λ8γργ5q,

and the SU(3) singlet, j(0)
5ρ = q̄γργ5q, currents,

j5ρ =
∑

a=3,8,0

Tr [λaQ̂2]

Tr [λ2
a]

j(a)
5ρ , (4)

where λ0 is the unity matrix.
Once the dependence on the largest momenta q1,2 is

factored out, the next step is to find the dependence of
the light-by-light scattering amplitude on the momentum

q3. This dependence is given by the amplitudes T (a)
γρ

that involve axial currents j(a)
5ρ and two electromagnetic

currents, one with momentum q3 and the other one (the
external magnetic field) with the vanishing momentum

T (a)
µ3ρ = i 〈0|

∫

d4z eiq3zT {j(a)
5ρ (z) jµ3

(0)}|γ〉. (5)

The triangle amplitudes for such kinematics were con-
sidered recently in [11]. It is shown in that reference that

T (a)
γρ can be written through two independent amplitudes,

T (a)
µ3ρ = −

ie NcTr [λaQ̂2]

4π2

{

w(a)
L (q2

3) q3ρq
σ
3 f̃σµ3

+

+w(a)
T (q2

3)
(

−q2
3f̃µ3ρ+q3µ3

qσ
3 f̃σρ−q3ρq

σ
3 f̃σµ3

)}

. (6)

The first (second) amplitude is related to the longitudinal
(transversal) part of the axial current, respectively. In
terms of hadrons, the invariant function wL(T ) describes
the exchanges of the pseudoscalar (pseudovector) mesons.

In perturbation theory wL,T are defined by the famous
triangle diagram. For massless quarks, we obtain:

w(a)
L (q2) = 2w(a)

T (q2) = −
2

q2
. (7)

An appearance of the longitudinal part is the signa-
ture of the axial Adler-Bell-Jackiw (ABJ) anomaly [10].
Although the perturbation theory is only reliable for
q2 $ Λ2

QCD, where it coincides with the leading term
of the OPE for the time-ordered product of the axial and
electromagnetic currents, the expressions for longitudinal

functions w(3,8)
L given in Eq.(7) are exact QCD results in

the chiral limit mq = 0 for nonsinglet axial currents. The
fact that there are no perturbative [12] and nonpertur-
bative [13] corrections to the axial anomaly implies that

the pole behavior of w(3,8)
L in Eq.(7) is correct all the

way down to small q2, where the poles are associated

with Goldstone pseudoscalar mesons, π0 in w(3)
L and η in

w(8)
L .
Equations (6) and (7) allow us to derive the coupling

of the π0 meson to photons. To this end, consider the

isovector part of the triangle amplitude T (3)
γρ . The residue

at q2 = 0, corresponding to the π0 pole, is the product
of two matrix elements,

〈0|j(3)
5ρ |π0〉 = 2iFπ qρ , 〈π0|jµ3

|γ〉 = −4egπγγqσ f̃σµ3
.(8)

Comparing with Eqs.(6), (7) we derive the well-known
result [10] for πγγ coupling:

gπγγ =
NcTr [λ3Q̂2]

16π2 Fπ
. (9)

In a similar way, the gηγγ coupling in the chiral limit can
be derived, if needed.

The absence of perturbative and non-perturbative cor-
rections and therefore the possibility to use the OPE
expressions for vanishing values of q2 is unique for the
longitudinal part of nonsinglet axial currents.1 For the
transversal functions wT as well as for the singlet longi-

tudinal function w(0)
L , there are higher order terms in the

OPE that, upon summation, generate mass terms that
shift the pole position 1/q2 → 1/(q2 − m2). We use this
modification of the pole-like terms for each channel in
what follows. The lightest pseudovector mesons are the
a1(1260), f1(1290) and f∗

1 (1420) mesons. For the singlet

axial current the pole in w(0)
L is shifted to m2

η′ .
Consider a triangle amplitude for any isospin channel

in the limit of large q2, where the OPE and the per-
turbation theory are applicable and Eq.(7) is valid. An
important consequence of this equation is that triangle
amplitudes are not suppressed for such values of q2. In
terms of hadrons it means that no form factor is present
in the hγ∗γ interaction vertex where the real photon is
soft (external magnetic field). This is in clear contradic-
tion with the common practice [5, 7, 8] when, for π0 ex-
change, the form factor Fπγ∗γ(q2, 0) is introduced. Such
transition form factor has to be present when one of the
photons is virtual, the other photon is on the mass shell
and the pion is on the mass shell as well. However, this is
not the kinematics that corresponds to the triangle and
the light-by-light scattering amplitudes, relevant for aµ

computation, where the pion virtuality is the same as
the virtuality of one of the photons. The absence of the
suppression is also consistent with the dispersion repre-
sentation of the amplitude since the imaginary part is
nonvanishing only at q2 = 0 in the chiral limit.

1 More precisely, perturbative corrections to w(3,8)
T

are also absent
as shown in Ref.[14].
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If we introduce a form factor                    in the vertex 
with the external magnetic field it will add

where the pion propagator is included. Clear that this 
does not contain the pion pole at           . Moreover, it 
does not modified the longitudinal part, only the 
transverse one. Thus, it changes what we call the 
pseudovector exchange in the model.

The longitudinal part is protected both perturbatively 
and nonperturbatively, it’s only perturbative for the 
transversal part associated with the pseudovector 
exchanges. 

1+ states are coupled to the axial current. It also provides the asymptotic behavior of form factors
at large k2

1 ≈ k2
2. In particular, we see that the π0γ∗γ∗ form factor F(k2, k2) goes as 1/k2 and

similar asymptotics hold for the axial–vector couplings. The relation in Eq. (10) does not imply that
other mesons, like e.g. scalars, do not contribute to HLbL, it is just that their γ∗γ∗ form factors
should fall off faster at large k2

1,2 .
The AVV triangle amplitude consists of two parts: the anomalous, longitudinal part and the non–

anomalous, transverse one; we consider the chiral limit where m2
π → 0. Because of the absence

of both perturbative and non–perturbative corrections to the anomalous AVV triangle graph in the
chiral limit, the pion pole description for the isovector part of the axial current works at all values of
k2
3 connecting regions of soft and hard virtual momenta. This, in particular, implies the absence of

a form factor F(0, q2) in the vertex which contains the external magnetic field. At first sight, this
conclusion seems somewhat puzzling because for non–vanishing external momentum q the form factor
F(q2, k2

3) certainly is attributed to the pion exchange. The answer is provided by the observation
that this form factor enters not in the longitudinal anomalous part, but in the transverse part. It is
for this reason that the axial anomaly is not corrected by the form factor. In the transverse part the
form factor shows up together with the massless pion pole in the form

F(0, q2) − F(0, 0)

q2
. (11)

At q2 = 0 this combination contains no pion pole at k2
3 = 0 . It means that the discussed piece con-

spires with the pseudovector exchange to produce the transverse result and in this sense becomes part
of what could be called the pseudovector exchange. It provides the leading short–distance constraint
for the pseudovector exchange. Contrary to the case of the longitudinal component, the transverse,
non–anomalous part of the AVV triangle is, however, corrected non–perturbatively [10, 11].

Additional constraints on subleading terms in the F(k2
i , k2

j ) form factor, which were derived in
Ref. [12], are also taken into account in the calculation quoted in Ref. [9].

The large momentum behavior which singles out pseudoscalar and pseudovector exchanges is,
however, not sufficient to fix per se a unique model for the evaluation of aHLbL because the bulk
of the integral in Eq. (4) comes from momenta ki of the order of an hadronic scale. However, the
faster decreasing of exchanges other than pseudoscalar and pseudovector ones makes these contribu-
tions numerically smaller. Moreover, the importance of asymmetric momenta configurations with two
momenta much larger than the third one was checked in [9, 13] numerically. This check is related to
a question which we next discuss.

There are other short–distance constraints than those associated with the particular kinematic
configuration governed by the AVV triangle. At present, none of the light–by–light hadronic pa-
rameterizations made so far in the literature can claim to satisfy fully all the QCD short–distance
properties of the HLbL amplitude which is needed for the evaluation of Eq. (4). In fact, within the
large–Nc framework, it has been shown [14] that, in general, for other than two–point functions and
two–point functions with soft insertions, this requires the inclusion of an infinite number of narrow
states. However, a numerical dominance of certain momenta configuration could help. In particular,
in the model of Ref. [9] with a minimal set of pseudoscalar and pseudovector exchanges, the corrections
due to additional constraints not satisfied in the model turn out to be quite small numerically. Note
that in the frameworks of the ENJL model [7, 8] the QCD short–distance constraints are accounted
for by adding up the quark loop with virtual momenta larger than the cutoff scale of the model.

4. Hadronic Model Calculations

In the previous section we have mentioned a few models used for the calculations of aHLbL: HGS
model in [4, 5, 6], ENJL model in [7, 8], the pseudoscalar exchange only in [1], the OPE based model of
pseudoscalar and pseudovector exchanges in [9]. In order to compare different results it is convenient
to separate the hadronic light–by–light contributions which are leading in the 1/Nc–expansion from
the non-leading ones [15].

Contributions which are leading in the 1/Nc expansion

6

Fπγ∗γ∗(0, q2; q2)

q2
3 = (q1 + q2)

2

1. Introduction.

From a theoretical point of view the hadronic light–by–light scattering (HLbL) contribution to the
muon magnetic moment is described by the vertex function (see Fig. 1 below):

Γ(H)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

∫
d4k2

(2π)4
Π(H)

µνρσ(q, k1, k3, k2)

k2
1k2

2k2
3

γν(!p2+ !k2−mµ)−1γρ(!p1− !k1−mµ)−1γσ ,

(1)
where mµ is the muon mass and Π(H)

µνρσ(q, k1, k3, k2), with q = p2 −p1 = −k1 −k2 −k3, denotes
the off–shell photon–photon scattering amplitude induced by hadrons,

Π(H)
µνρσ(q, k1, k3, k2) =

∫

d4x1

∫

d4x2

∫

d4x3 exp[−i(k1 · x1+k2 · x2+k3 · x3)]

×〈0|T{jµ(0) jν(x1) jρ(x2) jσ(x3)}|0〉 . (2)

Here jµ is the Standard Model electromagnetic current, jµ(x) =
∑

q Qqq̄(x)γµq(x), where Qq

denotes the electric charge of quark q. The external photon with momentum q represents the magnetic
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p
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H

Figure 1: Hadronic light–by–light scattering contribution.

field. We are interested in the limit q → 0 where the current conservation implies that Γ(H)
µ is linear

in q,

Γ(H)
µ = −

aHLbL

4mµ

[γµ , γν ] qν . (3)

The muon anomaly can then be extracted as follows

aHLbL =
−ie6

48mµ

∫
d4k1

(2π)4

∫
d4k2

(2π)4
1

k2
1k2

2k2
3

[
∂

∂qµ
Π(H)

λνρσ(q, k1, k3, k2)

]

q=0

× tr
{

(!p + mµ)[γµ, γλ](!p + mµ)γν(!p+ !k2 − mµ)−1γρ(!p− !k1 − mµ)−1γσ
}

.(4)

Unlike the case of the hadronic vacuum polarization (HVP) contribution, there is no direct ex-
perimental input for the hadronic light–by–light scattering (HLbL) so one has to rely on theoretical
approaches. Let us start with the massive quark loop contribution which is known analytically,

aHLbL(quark loop) =

(
α

π

)3

NcQ
4
q

{
[
3

2
ζ(3) −

19

16

]

︸ ︷︷ ︸

0.62

m2
µ

m2
q

+ O

[

m4
µ

m4
q

log2
m2

µ

m2
q

] }

, (5)
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field. We are interested in the limit q → 0 where the current conservation implies that Γ(H)
µ is linear

in q,

Γ(H)
µ = −

aHLbL
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[γµ , γν ] qν . (3)

The muon anomaly can then be extracted as follows
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∂
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{
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}

.(4)

Unlike the case of the hadronic vacuum polarization (HVP) contribution, there is no direct ex-
perimental input for the hadronic light–by–light scattering (HLbL) so one has to rely on theoretical
approaches. Let us start with the massive quark loop contribution which is known analytically,

aHLbL(quark loop) =

(
α

π

)3

NcQ
4
q

{
[
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2
ζ(3) −
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An additional note:
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Quark-based HLbL calculations 

Goecke, Fischer,  and Williams suggested to use the 
Dyson-Schwinger approach to calculation of the HLbL 
quark loop and claim a considerable enhancement of the 
HLbL contribution,

They fit the vacuum polarization rather well and  
compare with ENJL approach with separation of scales.
There were some substantial changes in the claim.

I think that the large Nc limit shows that the enhancement 
have to be transferred into enhancement of meson-gamma-
gamma vertex what can be experimentally verified.

1 Introduction
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Quark loop estimates were discussed by Erler 
and Sanchez who followed Pivovarov’s work of 2001.

He used 

3

m̄d != m̄u cancel to first order in aVP
µ (2, had) (but not

in aLBL
µ (had) below) and can be neglected. Notice, that

the estimate (7) is in reasonable agreement with Eq. (5)
and that our central value is below it. This is consis-
tent with the chiral limit, mπ → 0 with mµ/mπ fixed,
underestimating [36] aVP

µ (2, had). Indeed, in this limit,

mπ → 0 =⇒
m̄q

µ
→

(

mπ

µ

)

√

1
4NC (Q2

u+Q2
d
)

≈

(

mπ

µ

)0.39

,

(where µ is a fixed reference scale) so that mµ/m̄q → 0.
Combined with K(s) > 0 this implies a systematic un-
derestimate. The fact that the estimate (7) reproduces
the experimental result within about 10% provides phe-
nomenological support for our approach and its use of
quark degrees of freedom. We can also directly compare
the contribution from c quarks, aVP

µ (2, c) = 1.27 × 10−9

from Eqs. (3) and (6), with the analytical result up to
order α2

s originally obtained in the second Ref. [20] in
the form given in Eq. (4) of Ref. [25]. Using m̂c(m̂c) =
1.29 GeV and α̂s(MZ) = 0.1216 ± 0.0017 (correspond-
ing to α̂s(m̂c) = 0.432 and α̂s(m̄c) = 0.473), the latter
yields aVP

µ (2, c) = 1.46 × 10−9. Thus, here we underes-
timate the known result by 13%, which is traceable to
different αs dependences in the RGE of α̂(µ) and the
leading O(m2

µ/m̂2
c) term in aVP

µ (2, had). QCD correc-
tions to the O(m4

µ/m̂4
q) term which are significant only

for lighter quarks tend to have a compensating effect, of-
fering a perturbative rationale why our approach seems
to work better for light quarks than for charm.

The success of the test in the previous paragraph may
be coincidental. Therefore, we performed three similar
tests on various three-loop VP effects, aVP

µ (3i, had), each

with a different kernel function, K(2i)(s) [26, 27]. i = a
contains an additional photonic correction or muon-loop
relative to aVP

µ (2, had), while i = b (c) corresponds to an
additional electron (hadron) loop insertion. Our method
(in parentheses) reproduces the central values of Ref. [28],

aVP
µ (3a, had) = −2.11× 10−9 (−1.82 × 10−9),

aVP
µ (3b, had) = +1.07× 10−9 (+0.99 × 10−9),

aVP
µ (3c, had) = +2.7 × 10−11 (+2.8 × 10−11),

(8)

within 14%, 7%, and 4%, respectively. Note, that these
represent genuine “hit or miss” tests involving no ad-
justable parameters, and all four passed at the 10% level.

We finally apply our approach to aLBL
µ (had). Our mas-

ter formula is the one for heavy leptons [10],

aLBL
µ (had) =

α3

π3
NC

∑

q

Q4
q

∞
∑

n=1

m2n
µ

m̄2n
q

2
∑

k=0

Cn,k lnk m2
µ

m̄2
q

,

where C1,0 = 3/2ζ3 − 19/16, C1,1 = C1,2 = 0, and where
the other Cn,k up to n = 5 can be found in Eq. (5) of
Ref. [9]. The central values in Eqs. (1–4) then imply
aLBL

µ (had) = 1.36 ± 0.13 × 10−9, where the uncertainty

is the model error, determined by the 9.5% difference
between the upper end of the range (5) from the cen-
tral value in Eq. (7). Similarly, the upper and lower er-
ror in Eqs. (1–2) and (7) correspond to aLBL

µ (had) =
1.27 ± 0.18 × 10−9 and aLBL

µ (had) = 1.47 ± 0.04 × 10−9,
i.e. model errors of 14.1% and 2.9%, respectively. As
expected, b quark effects are negligible, but the contri-
bution from c quarks (usually ignored) turns out to be
0.04×10−9. Although small it might serve as an interest-
ing testing tool of other model calculations of aLBL

µ (had)
which should be consistent with what we have obtained,
since our method is solid (up to effects of O(αs)) for
heavy quarks. To account for isospin breaking we shift
m̄d by +2 MeV and m̄u by −1 MeV, increasing all results
by 0.01 × 10−9 to

aLBL
µ (had) = 1.37−0.27

+0.15 × 10−9, (9)

where the error covers the three ranges above and is
constructed to include the intrinsic model uncertainty.
As in any hadronic model there would be additional
model uncertainty if the comparison to other cases (here
aVP

µ (had)) was regarded as pure coincidence. The re-
sult, 1.36 ± 0.25 × 10−9, of Ref. [7] is the first to take
short-distance QCD constraints explicitly into account.
By construction, this is a feature of our approach, as
well, so it is gratifying that the estimate (9) turns out to
agree perfectly. Our central value is higher than previ-
ous ones [6], which is expected given that in the chiral
limit, mπ → 0 with mµ/mπ fixed (and presumably also
with mµ fixed, but the scalar QED result in this case is
not known), we overestimate aLBL

µ (had) since π±-loops
contribute negatively.

Now we repeat the above analysis with the model
errors multiplied by 1.645 to shift from uncertainties
estimated in a “1σ spirit” to 90% ranges, and find
aLBL

µ (had) = 1.37±0.21×10−9, aLBL
µ (had) = 1.28±0.30×

10−9, and aLBL
µ (had) = 1.48 ± 0.07 × 10−9, respectively.

The upper errors have converged, and since as mentioned
our approach tends to overestimate aLBL

µ (had), we quote
as our final result the 95% CL upper bound,

aLBL
µ (had) < 1.59 × 10−9. (10)

In a similar paper [15], a 1-parameter fit to aVP
µ (2, had)

resulted in mu = md = ms − 180 MeV = 166 ± 1 MeV.
These values are within errors consistent with Eqs. (1–2),
reflecting our statement that aVP

µ (2, had) and α̂(µ) can
be approximated using the same masses. We benefited
from a deeper m2

µ/m2
q-expansion of aLBL

µ [9], lowering the
light quark contribution relative to [15] by ∼ 6%. The
most important new aspect here is that the recent scalar
QED calculation [9] allows us to interpolate between the
chiral and heavy quark limits. If one can prove (conceiv-
ably by lattice simulations) the monotony of the product
m2

qa
LBL
µ (had) as a function of mq, our bound (10) would

become rigorous, but this remains a loophole for now.

to fit the vacuum polarization in the leading order as 
well as in NLO with quark loop without strong 
interactions.

Then he used these masses and the Laporta-Remiddi 
result  to get                = 143               Erler and Sanchez 
formulate it as an upper bound              <150   

Strange duality but at least supported by few fits.
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m̄d != m̄u cancel to first order in aVP
µ (2, had) (but not

in aLBL
µ (had) below) and can be neglected. Notice, that

the estimate (7) is in reasonable agreement with Eq. (5)
and that our central value is below it. This is consis-
tent with the chiral limit, mπ → 0 with mµ/mπ fixed,
underestimating [36] aVP

µ (2, had). Indeed, in this limit,

mπ → 0 =⇒
m̄q

µ
→

(

mπ

µ

)

√

1
4NC (Q2

u+Q2
d
)

≈

(

mπ

µ

)0.39

,

(where µ is a fixed reference scale) so that mµ/m̄q → 0.
Combined with K(s) > 0 this implies a systematic un-
derestimate. The fact that the estimate (7) reproduces
the experimental result within about 10% provides phe-
nomenological support for our approach and its use of
quark degrees of freedom. We can also directly compare
the contribution from c quarks, aVP

µ (2, c) = 1.27 × 10−9

from Eqs. (3) and (6), with the analytical result up to
order α2

s originally obtained in the second Ref. [20] in
the form given in Eq. (4) of Ref. [25]. Using m̂c(m̂c) =
1.29 GeV and α̂s(MZ) = 0.1216 ± 0.0017 (correspond-
ing to α̂s(m̂c) = 0.432 and α̂s(m̄c) = 0.473), the latter
yields aVP

µ (2, c) = 1.46 × 10−9. Thus, here we underes-
timate the known result by 13%, which is traceable to
different αs dependences in the RGE of α̂(µ) and the
leading O(m2

µ/m̂2
c) term in aVP

µ (2, had). QCD correc-
tions to the O(m4

µ/m̂4
q) term which are significant only

for lighter quarks tend to have a compensating effect, of-
fering a perturbative rationale why our approach seems
to work better for light quarks than for charm.

The success of the test in the previous paragraph may
be coincidental. Therefore, we performed three similar
tests on various three-loop VP effects, aVP

µ (3i, had), each

with a different kernel function, K(2i)(s) [26, 27]. i = a
contains an additional photonic correction or muon-loop
relative to aVP

µ (2, had), while i = b (c) corresponds to an
additional electron (hadron) loop insertion. Our method
(in parentheses) reproduces the central values of Ref. [28],

aVP
µ (3a, had) = −2.11× 10−9 (−1.82 × 10−9),

aVP
µ (3b, had) = +1.07× 10−9 (+0.99 × 10−9),

aVP
µ (3c, had) = +2.7 × 10−11 (+2.8 × 10−11),

(8)

within 14%, 7%, and 4%, respectively. Note, that these
represent genuine “hit or miss” tests involving no ad-
justable parameters, and all four passed at the 10% level.

We finally apply our approach to aLBL
µ (had). Our mas-

ter formula is the one for heavy leptons [10],

aLBL
µ (had) =

α3

π3
NC

∑

q

Q4
q

∞
∑

n=1

m2n
µ

m̄2n
q

2
∑

k=0

Cn,k lnk m2
µ

m̄2
q

,

where C1,0 = 3/2ζ3 − 19/16, C1,1 = C1,2 = 0, and where
the other Cn,k up to n = 5 can be found in Eq. (5) of
Ref. [9]. The central values in Eqs. (1–4) then imply
aLBL

µ (had) = 1.36 ± 0.13 × 10−9, where the uncertainty

is the model error, determined by the 9.5% difference
between the upper end of the range (5) from the cen-
tral value in Eq. (7). Similarly, the upper and lower er-
ror in Eqs. (1–2) and (7) correspond to aLBL

µ (had) =
1.27 ± 0.18 × 10−9 and aLBL

µ (had) = 1.47 ± 0.04 × 10−9,
i.e. model errors of 14.1% and 2.9%, respectively. As
expected, b quark effects are negligible, but the contri-
bution from c quarks (usually ignored) turns out to be
0.04×10−9. Although small it might serve as an interest-
ing testing tool of other model calculations of aLBL

µ (had)
which should be consistent with what we have obtained,
since our method is solid (up to effects of O(αs)) for
heavy quarks. To account for isospin breaking we shift
m̄d by +2 MeV and m̄u by −1 MeV, increasing all results
by 0.01 × 10−9 to

aLBL
µ (had) = 1.37−0.27

+0.15 × 10−9, (9)

where the error covers the three ranges above and is
constructed to include the intrinsic model uncertainty.
As in any hadronic model there would be additional
model uncertainty if the comparison to other cases (here
aVP

µ (had)) was regarded as pure coincidence. The re-
sult, 1.36 ± 0.25 × 10−9, of Ref. [7] is the first to take
short-distance QCD constraints explicitly into account.
By construction, this is a feature of our approach, as
well, so it is gratifying that the estimate (9) turns out to
agree perfectly. Our central value is higher than previ-
ous ones [6], which is expected given that in the chiral
limit, mπ → 0 with mµ/mπ fixed (and presumably also
with mµ fixed, but the scalar QED result in this case is
not known), we overestimate aLBL

µ (had) since π±-loops
contribute negatively.

Now we repeat the above analysis with the model
errors multiplied by 1.645 to shift from uncertainties
estimated in a “1σ spirit” to 90% ranges, and find
aLBL

µ (had) = 1.37±0.21×10−9, aLBL
µ (had) = 1.28±0.30×

10−9, and aLBL
µ (had) = 1.48 ± 0.07 × 10−9, respectively.

The upper errors have converged, and since as mentioned
our approach tends to overestimate aLBL

µ (had), we quote
as our final result the 95% CL upper bound,

aLBL
µ (had) < 1.59 × 10−9. (10)

In a similar paper [15], a 1-parameter fit to aVP
µ (2, had)

resulted in mu = md = ms − 180 MeV = 166 ± 1 MeV.
These values are within errors consistent with Eqs. (1–2),
reflecting our statement that aVP

µ (2, had) and α̂(µ) can
be approximated using the same masses. We benefited
from a deeper m2

µ/m2
q-expansion of aLBL

µ [9], lowering the
light quark contribution relative to [15] by ∼ 6%. The
most important new aspect here is that the recent scalar
QED calculation [9] allows us to interpolate between the
chiral and heavy quark limits. If one can prove (conceiv-
ably by lattice simulations) the monotony of the product
m2

qa
LBL
µ (had) as a function of mq, our bound (10) would

become rigorous, but this remains a loophole for now.
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the pseudovector meson lower. This leads to the increase
in aPV

µ as compared to Eq.(30). We obtain the following
estimate:

aPV
µ = (5.7 + 15.6 + 0.8) × 10−11 = 22 × 10−11, (35)

where the three terms displayed separately are due to the
isovector, u + d and s exchanges respectively.

To check the stability of the model, we consider an
opposite case for the mixing, assuming that f1 is a pure
octet and and f∗

1 is an SU(3) singlet meson. The estimate
for aPV

µ then becomes

aPV
µ = (5.7 + 1.9 + 9.7) × 10−11 = 17 × 10−11. (36)

We see that the SU(3)-singlet contribution is significant,
in spite of the fact that the corresponding masses are
the largest. The reason for such a behavior is a stronger
coupling of the SU(3)-singlet meson to two photons. We
see also that in spite of a very strong redistribution be-
tween the different SU(3) channels, the final result for
the pseudovector contribution is relatively stable against
such variations of the model.

We use the result for the pseudovector contribution in
Eq.(35) in our final estimate of albl

µ assigning ±5× 10−11

as an error estimate.

V. THE ANATOMY OF THE PION BOX
CONTRIBUTION

In this Section we make a few comments concerning
another contribution to albl

µ frequently considered in the
literature, the so-called pion box contribution. This con-
tribution is peculiar because, being independent of the
number of colors Nc, it is enhanced by the other po-
tentially large parameter, the small value of the pion
mass relative to the scale of chiral symmetry breaking
∼ 1 GeV.

The results for the pion box contribution to albl
µ were

obtained in [5, 7]; they are apion
µ = −4.5(8.5) × 10−11

in [5] and apion
µ = −19(5) × 10−11 in [7]. The differ-

ence between the two results is attributed to a different
treatment of subleading terms in the chiral expansion;
while the vector meson dominance (VMD) model is used
in [7] to couple photons to pions, the so-called hidden
local symmetry (HLS) model is used in [5].3 Although
the smallness of apion

µ shows that the chiral enhancement
is not efficient for albl

µ , the strong sensitivity of the final
result to the particular method of including heavier reso-
nances suggests that the chiral expansion per se may not

3 The claim in [15] and [5] that the VMD model violates the Ward
identities for the γ∗γ∗ππ amplitude is not correct, if the VMD
is implemented in the standard way, by introducing the factor
(M2gµν + qµqν)/(M2 + q2) for each photon in any interaction
vertex. The Ward identities, discussed in [5], are then automat-
ically satisfied.

be a reliable tool for this problem. If this is true, the
natural question is to what extent the above estimates of
the pion box can be trusted. With this question in mind,
we investigated an “anatomy” of this contribution based
on the analytic calculation of apion

µ in the framework of
the HLS model.

The logic which is behind the use of the chiral expan-
sion to estimate subleading O(N0

c ) contributions to albl
µ

is as follows. If the pion box contribution to aµ is deter-
mined by small values of virtual momenta, comparable
to the masses of muon and pion, we can compute it by
using chiral perturbation theory. The leading term in the
chiral expansion delivers a parametrically enhanced con-
tribution (α/π)3(mµ/mπ)2 to albl

µ , which can be derived
from the scalar QED Lagrangian for the pions:

L = DµπDµπ∗ − m2
π|π|2. (37)

Here Dµ = ∂µ − ieAµ is the covariant derivative and π
is the pion field. The Lagrangian Eq.(37) is the lead-
ing term in the effective chiral Lagrangian and hence
the terms neglected in Eq.(37), are suppressed by the
square of the ratio of the pion mass to the scale of the
chiral symmetry breaking. Numerically, these correc-
tions are expected to be small since m2

π/M2
ρ ∼ 0.04 and

m2
π/(4πfπ)2 ∼ 0.025; therefore, they should not change

the scalar QED prediction by more than a few per cent.
It is then puzzling that the results available in the lit-

erature exhibit drastically different behavior. Existing
calculations show that the scalar QED contribution is re-
duced by a factor from three [7] to ten [5], when sublead-
ing terms in the chiral expansion are included. Hence,
the results for the pion box contributions existing in the
literature tell us that the chiral expansion for this con-
tribution does not work. In order to identify the reason
for that, we computed several terms of the expansion in
mπ/Mρ in the framework of the HLS model. Comparing
the magnitude of the subsequent terms in the expansion,
we can determine the rate of convergence of the chiral
expansion and estimate the typical virtual momentum in
the pion box diagram.

As we demonstrate below, the typical virtualities in the
pion box diagram are approximately 4mπ which leads to
a slow convergence of the chiral expansion and explains,
to a certain extent, a very strong cancellation between
the leading order scalar QED result and the first m2

π/M2
ρ

correction. The remaining terms in the chiral expansion
are smaller (although not negligible).

Large value of typical virtualities brings in another
problem with the scalar QED model Eq.(37) and its mod-
ifications based on the VMD. Since fairly large virtuali-
ties are involved, one might wonder about the quality of
the model for asymptotically large values of q. To see
that the model fails relatively early, we can consider the
deep inelastic scattering of a virtual photon with large
value of q2, on a pion. The Lagrangian (37) then implies
the dominance of the longitudinal structure function,
while QCD predicts the opposite. Modifying the scalar

3

m̄d != m̄u cancel to first order in aVP
µ (2, had) (but not

in aLBL
µ (had) below) and can be neglected. Notice, that

the estimate (7) is in reasonable agreement with Eq. (5)
and that our central value is below it. This is consis-
tent with the chiral limit, mπ → 0 with mµ/mπ fixed,
underestimating [36] aVP

µ (2, had). Indeed, in this limit,

mπ → 0 =⇒
m̄q

µ
→

(

mπ

µ

)

√

1
4NC (Q2

u+Q2
d
)

≈

(

mπ

µ

)0.39

,

(where µ is a fixed reference scale) so that mµ/m̄q → 0.
Combined with K(s) > 0 this implies a systematic un-
derestimate. The fact that the estimate (7) reproduces
the experimental result within about 10% provides phe-
nomenological support for our approach and its use of
quark degrees of freedom. We can also directly compare
the contribution from c quarks, aVP

µ (2, c) = 1.27 × 10−9

from Eqs. (3) and (6), with the analytical result up to
order α2

s originally obtained in the second Ref. [20] in
the form given in Eq. (4) of Ref. [25]. Using m̂c(m̂c) =
1.29 GeV and α̂s(MZ) = 0.1216 ± 0.0017 (correspond-
ing to α̂s(m̂c) = 0.432 and α̂s(m̄c) = 0.473), the latter
yields aVP

µ (2, c) = 1.46 × 10−9. Thus, here we underes-
timate the known result by 13%, which is traceable to
different αs dependences in the RGE of α̂(µ) and the
leading O(m2

µ/m̂2
c) term in aVP

µ (2, had). QCD correc-
tions to the O(m4

µ/m̂4
q) term which are significant only

for lighter quarks tend to have a compensating effect, of-
fering a perturbative rationale why our approach seems
to work better for light quarks than for charm.

The success of the test in the previous paragraph may
be coincidental. Therefore, we performed three similar
tests on various three-loop VP effects, aVP

µ (3i, had), each

with a different kernel function, K(2i)(s) [26, 27]. i = a
contains an additional photonic correction or muon-loop
relative to aVP

µ (2, had), while i = b (c) corresponds to an
additional electron (hadron) loop insertion. Our method
(in parentheses) reproduces the central values of Ref. [28],

aVP
µ (3a, had) = −2.11× 10−9 (−1.82 × 10−9),

aVP
µ (3b, had) = +1.07× 10−9 (+0.99 × 10−9),

aVP
µ (3c, had) = +2.7 × 10−11 (+2.8 × 10−11),

(8)

within 14%, 7%, and 4%, respectively. Note, that these
represent genuine “hit or miss” tests involving no ad-
justable parameters, and all four passed at the 10% level.

We finally apply our approach to aLBL
µ (had). Our mas-

ter formula is the one for heavy leptons [10],

aLBL
µ (had) =

α3

π3
NC

∑

q

Q4
q

∞
∑

n=1

m2n
µ

m̄2n
q

2
∑

k=0

Cn,k lnk m2
µ

m̄2
q

,

where C1,0 = 3/2ζ3 − 19/16, C1,1 = C1,2 = 0, and where
the other Cn,k up to n = 5 can be found in Eq. (5) of
Ref. [9]. The central values in Eqs. (1–4) then imply
aLBL

µ (had) = 1.36 ± 0.13 × 10−9, where the uncertainty

is the model error, determined by the 9.5% difference
between the upper end of the range (5) from the cen-
tral value in Eq. (7). Similarly, the upper and lower er-
ror in Eqs. (1–2) and (7) correspond to aLBL

µ (had) =
1.27 ± 0.18 × 10−9 and aLBL

µ (had) = 1.47 ± 0.04 × 10−9,
i.e. model errors of 14.1% and 2.9%, respectively. As
expected, b quark effects are negligible, but the contri-
bution from c quarks (usually ignored) turns out to be
0.04×10−9. Although small it might serve as an interest-
ing testing tool of other model calculations of aLBL

µ (had)
which should be consistent with what we have obtained,
since our method is solid (up to effects of O(αs)) for
heavy quarks. To account for isospin breaking we shift
m̄d by +2 MeV and m̄u by −1 MeV, increasing all results
by 0.01 × 10−9 to

aLBL
µ (had) = 1.37−0.27

+0.15 × 10−9, (9)

where the error covers the three ranges above and is
constructed to include the intrinsic model uncertainty.
As in any hadronic model there would be additional
model uncertainty if the comparison to other cases (here
aVP

µ (had)) was regarded as pure coincidence. The re-
sult, 1.36 ± 0.25 × 10−9, of Ref. [7] is the first to take
short-distance QCD constraints explicitly into account.
By construction, this is a feature of our approach, as
well, so it is gratifying that the estimate (9) turns out to
agree perfectly. Our central value is higher than previ-
ous ones [6], which is expected given that in the chiral
limit, mπ → 0 with mµ/mπ fixed (and presumably also
with mµ fixed, but the scalar QED result in this case is
not known), we overestimate aLBL

µ (had) since π±-loops
contribute negatively.

Now we repeat the above analysis with the model
errors multiplied by 1.645 to shift from uncertainties
estimated in a “1σ spirit” to 90% ranges, and find
aLBL

µ (had) = 1.37±0.21×10−9, aLBL
µ (had) = 1.28±0.30×

10−9, and aLBL
µ (had) = 1.48 ± 0.07 × 10−9, respectively.

The upper errors have converged, and since as mentioned
our approach tends to overestimate aLBL

µ (had), we quote
as our final result the 95% CL upper bound,

aLBL
µ (had) < 1.59 × 10−9. (10)

In a similar paper [15], a 1-parameter fit to aVP
µ (2, had)

resulted in mu = md = ms − 180 MeV = 166 ± 1 MeV.
These values are within errors consistent with Eqs. (1–2),
reflecting our statement that aVP

µ (2, had) and α̂(µ) can
be approximated using the same masses. We benefited
from a deeper m2

µ/m2
q-expansion of aLBL

µ [9], lowering the
light quark contribution relative to [15] by ∼ 6%. The
most important new aspect here is that the recent scalar
QED calculation [9] allows us to interpolate between the
chiral and heavy quark limits. If one can prove (conceiv-
ably by lattice simulations) the monotony of the product
m2

qa
LBL
µ (had) as a function of mq, our bound (10) would

become rigorous, but this remains a loophole for now.
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the pseudovector meson lower. This leads to the increase
in aPV

µ as compared to Eq.(30). We obtain the following
estimate:

aPV
µ = (5.7 + 15.6 + 0.8) × 10−11 = 22 × 10−11, (35)

where the three terms displayed separately are due to the
isovector, u + d and s exchanges respectively.

To check the stability of the model, we consider an
opposite case for the mixing, assuming that f1 is a pure
octet and and f∗

1 is an SU(3) singlet meson. The estimate
for aPV

µ then becomes

aPV
µ = (5.7 + 1.9 + 9.7) × 10−11 = 17 × 10−11. (36)

We see that the SU(3)-singlet contribution is significant,
in spite of the fact that the corresponding masses are
the largest. The reason for such a behavior is a stronger
coupling of the SU(3)-singlet meson to two photons. We
see also that in spite of a very strong redistribution be-
tween the different SU(3) channels, the final result for
the pseudovector contribution is relatively stable against
such variations of the model.

We use the result for the pseudovector contribution in
Eq.(35) in our final estimate of albl

µ assigning ±5× 10−11

as an error estimate.

V. THE ANATOMY OF THE PION BOX
CONTRIBUTION

In this Section we make a few comments concerning
another contribution to albl

µ frequently considered in the
literature, the so-called pion box contribution. This con-
tribution is peculiar because, being independent of the
number of colors Nc, it is enhanced by the other po-
tentially large parameter, the small value of the pion
mass relative to the scale of chiral symmetry breaking
∼ 1 GeV.

The results for the pion box contribution to albl
µ were

obtained in [5, 7]; they are apion
µ = −4.5(8.5) × 10−11

in [5] and apion
µ = −19(5) × 10−11 in [7]. The differ-

ence between the two results is attributed to a different
treatment of subleading terms in the chiral expansion;
while the vector meson dominance (VMD) model is used
in [7] to couple photons to pions, the so-called hidden
local symmetry (HLS) model is used in [5].3 Although
the smallness of apion

µ shows that the chiral enhancement
is not efficient for albl

µ , the strong sensitivity of the final
result to the particular method of including heavier reso-
nances suggests that the chiral expansion per se may not

3 The claim in [15] and [5] that the VMD model violates the Ward
identities for the γ∗γ∗ππ amplitude is not correct, if the VMD
is implemented in the standard way, by introducing the factor
(M2gµν + qµqν)/(M2 + q2) for each photon in any interaction
vertex. The Ward identities, discussed in [5], are then automat-
ically satisfied.

be a reliable tool for this problem. If this is true, the
natural question is to what extent the above estimates of
the pion box can be trusted. With this question in mind,
we investigated an “anatomy” of this contribution based
on the analytic calculation of apion

µ in the framework of
the HLS model.

The logic which is behind the use of the chiral expan-
sion to estimate subleading O(N0

c ) contributions to albl
µ

is as follows. If the pion box contribution to aµ is deter-
mined by small values of virtual momenta, comparable
to the masses of muon and pion, we can compute it by
using chiral perturbation theory. The leading term in the
chiral expansion delivers a parametrically enhanced con-
tribution (α/π)3(mµ/mπ)2 to albl

µ , which can be derived
from the scalar QED Lagrangian for the pions:

L = DµπDµπ∗ − m2
π|π|2. (37)

Here Dµ = ∂µ − ieAµ is the covariant derivative and π
is the pion field. The Lagrangian Eq.(37) is the lead-
ing term in the effective chiral Lagrangian and hence
the terms neglected in Eq.(37), are suppressed by the
square of the ratio of the pion mass to the scale of the
chiral symmetry breaking. Numerically, these correc-
tions are expected to be small since m2

π/M2
ρ ∼ 0.04 and

m2
π/(4πfπ)2 ∼ 0.025; therefore, they should not change

the scalar QED prediction by more than a few per cent.
It is then puzzling that the results available in the lit-

erature exhibit drastically different behavior. Existing
calculations show that the scalar QED contribution is re-
duced by a factor from three [7] to ten [5], when sublead-
ing terms in the chiral expansion are included. Hence,
the results for the pion box contributions existing in the
literature tell us that the chiral expansion for this con-
tribution does not work. In order to identify the reason
for that, we computed several terms of the expansion in
mπ/Mρ in the framework of the HLS model. Comparing
the magnitude of the subsequent terms in the expansion,
we can determine the rate of convergence of the chiral
expansion and estimate the typical virtual momentum in
the pion box diagram.

As we demonstrate below, the typical virtualities in the
pion box diagram are approximately 4mπ which leads to
a slow convergence of the chiral expansion and explains,
to a certain extent, a very strong cancellation between
the leading order scalar QED result and the first m2

π/M2
ρ

correction. The remaining terms in the chiral expansion
are smaller (although not negligible).

Large value of typical virtualities brings in another
problem with the scalar QED model Eq.(37) and its mod-
ifications based on the VMD. Since fairly large virtuali-
ties are involved, one might wonder about the quality of
the model for asymptotically large values of q. To see
that the model fails relatively early, we can consider the
deep inelastic scattering of a virtual photon with large
value of q2, on a pion. The Lagrangian (37) then implies
the dominance of the longitudinal structure function,
while QCD predicts the opposite. Modifying the scalar
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One more approach: instanton induced nonlocal quark 
interaction by Dorohov and collaborators. 

There is no much of theoretical control but the approach 
fits VP and then HLbL numbers are in to the same 
ballpark as others.
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Ref. [?, ?] with, however, a larger error which covers the effect of other unaccounted meson exchanges,

aHLbL(scalars) = −(0.7 ± 0.7) × 10−10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(π−dressed loop) = −(1.9 ± 1.9) × 10−10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (??), we get

aHLbL = (105 ± 26) × 10−11 , (16)

as our final estimate.

Γ(f1(1285) → γγ∗) = (2.8 ± 0.8) keV (17)

We wish to emphasize, however, that this is only what we consider to be our best estimate at present.
In view of the proposed new gµ−2 experiment, it would be nice to have more independent calculations
in order to make this estimate more robust. More experimental information on the decays π0 → γγ∗,
π0 → γ∗γ∗ and π0 → e+e− (with radiative corrections included) could also help to confirm the
result of the main contribution in Eq. (??).

More theoretical work is certainly needed for a better understanding of the other contributions
which, although smaller than the one from pseudoscalar exchanges, have nevertheless large uncertain-
ties. This refers, in particular, to pseudovector exchanges in Eq. (??) but other C-even exchanges are
also important. Experimental data on radiative decays and two-photon production of C-even reso-
nances could be helpful. An evaluation of 1/Nc–suppresed loop contributions present even a more
difficult task. New approaches to the dressed pion loop contribution, in parallel with experimental in-
formation on the vertex π+π−γ∗γ∗, would be very welcome. Again, measurement of the two-photon
processes like e+e− → e+e−π+π− could give some information on that vertex and help to reduce
the model dependence and therefore the present uncertainty in Eq. (??).
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Ref. [7, 8] with, however, a larger error which covers the effect of other unaccounted meson exchanges,

aHLbL(scalars) = −(0.7 ± 0.7) × 10−10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(π−dressed loop) = −(1.9 ± 1.9) × 10−10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (6), we get

aHLbL = (105 ± 26) × 10−11 , (16)

as our final estimate.
Γ(f1(1285) → γρ0)

Γtotal
= (5.5 ± 1.3) × 10−2 (17)

Γ(f1(1285) → γγ∗) = (2.8 ± 0.8) keV (18)

We wish to emphasize, however, that this is only what we consider to be our best estimate at present.
In view of the proposed new gµ−2 experiment, it would be nice to have more independent calculations
in order to make this estimate more robust. More experimental information on the decays π0 → γγ∗,
π0 → γ∗γ∗ and π0 → e+e− (with radiative corrections included) could also help to confirm the
result of the main contribution in Eq. (12).

More theoretical work is certainly needed for a better understanding of the other contributions
which, although smaller than the one from pseudoscalar exchanges, have nevertheless large uncertain-
ties. This refers, in particular, to pseudovector exchanges in Eq. (13) but other C-even exchanges are
also important. Experimental data on radiative decays and two-photon production of C-even reso-
nances could be helpful. An evaluation of 1/Nc–suppresed loop contributions present even a more
difficult task. New approaches to the dressed pion loop contribution, in parallel with experimental in-
formation on the vertex π+π−γ∗γ∗, would be very welcome. Again, measurement of the two-photon
processes like e+e− → e+e−π+π− could give some information on that vertex and help to reduce
the model dependence and therefore the present uncertainty in Eq. (15).
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This is compatible with our model of pseudovector 
exchange. However,

leads to a strong enhancement (of order of 5) for PV 
exchange. Could be an example of strong enhancement 
if would be not contradictive.

Pseudovector Puzzle 
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Conclusions 

Having in mind that the new g-2 experiments are on 
its way more efforts are needed to improve 
accuracy for the hadronic light-by-light contribution.

In my view it should involve new measurements of 
hadronic two-photon production of different 
mesons which provides a good test of theoretical 
models for HLbL.
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