

Precision Measurements in last year

arXiv.org > hep-ph > arXiv:1302.3794

High Energy Physics – Phenomenology

Higgs Precision (Higgcision) Era begins

arXiv.org > hep-ph > arXiv:1212.2355

High Energy Physics – Phenomenology

Precise charm-quark mass from deep-inelastic scattering

arXiv.org > hep-ex > arXiv:1212.4012

High Energy Physics - Experiment

Precision Measurement of the Ratio of the Charged Kaon Leptonic Decay Rates

arXiv.org > hep-ex > arXiv:1304.6865

High Energy Physics - Experiment

Precision measurement of D meson mass differences

0.05% 500 ppm

4 %

30 %

0.4 %

Precision SM variables from accelerators

M_z determined to 20 ppm

$G_{\scriptscriptstyle F}$ (from $\tau_{\!\mu})$ determined to 0.6 ppm

Electron magnetic moment : 0.3 ppb

$g-2 = 0.00231930436146 \pm 0.00000000000056$

The precision mantra

1947 - 1948

- 1. Lamb *et al.* : Fine splitting in hydrogen
- Rabi *et al.*, Hyperfine structure of hydrogen + deuterium
- Kusch & Foley : precision magnetic moment of electron: (g-2)

All disagreed with Dirac theory...

"Never measure anything but frequency"

Measuring Magnetic Moments Isn't Easy...

"If you enjoy doing difficult experiments, you can do them, but it is a waste of time and effort because the result is already known" : Pauli

"No experiment is so dumb, that it should not be tried" : Gerlach

Evidence for proton structure in 1933 from its magnetic moment.

What is the magnetic moment / g-2

$$ec{\mu} = g rac{Qe}{2m} ec{s}$$

 $ec{\mu} imes ec{B}$ Interaction between magnetic moment (spin) with B-field.

What's g-2

Additional "Pauli-term" interactions $\,(g-2)F_{\mu
u}\sigma^{\mu
u}$

from loops give **a non g=2 contribution**. This is the so-called anomalous contribution.

$$a_{\mu} = \left(\frac{g-2}{2}\right)$$

These interactions flip the chirality of the muon.

QED:5 (NNNNLO!) contribution

arxiv:1205.5370 12,672 diagrams... $(753.29 \pm 1.04) \times \left(\frac{\alpha}{\pi}\right)^5$

Known to 0.3 ppb (vs 0.5 ppm current experiment)

SM (Non-QED) Contributions to g-2

Hadronic uncertainty : 0.42 ppm : comparable with current experimental uncertainty.

Hadronic Contribution & g-2

"We can't trust the hadronic calculations, so there is no point measuring g-2 !"

If we assume this is wrong then : $M_{\rm H}=94\to68~GeV$ and 95% upper limit in tension with observed 125 GeV state

New Physics Contribution to g-2

Although precision of electron g-2 measurement is phenomenal it does not have sensitivity to new physics except at very low masses.

Ideally we'd like to measure tau g-2 but lifetime too short and the precision is not yet even sensitive to $(\alpha/2\pi)$ QED contribution.

To probe TeV-scale physics need to measure muon g-2 to high precision

This precision at FNAL even with no improvement in SM prediction uncertainty would establish BSM physics at beyond 5 σ if BNL a_µ value confirmed.

Muon g-2 Measurements

Why bother measuring it to 0.1 ppm?

It's clearly of interest

E821 Citations

2098 citations

2nd most cited paper in experimental particle physics

Why is this one number so interesting ?

Photon-2013 : May 2013 : 17

Coloured vs Non-Coloured Sector

Data (at least in coloured sector) is dis-favouring light SUSY.

SUSY Fits

	Observable	$\Delta \chi^2$	$\Delta \chi^2$	$\Delta \chi^2$	$\Delta \chi^2$
		CMSSM (high)	CMSSM (low)	NUHM1 (high)	NUHM1 (low)
	Global	33.0	32.8	31.8	31.3
	$BR_{b \rightarrow s\gamma}^{EXP/SM}$	1.15	1.19	0.94	0.18
	$BR_{B \rightarrow \tau \nu}^{EXP/SM}$	1.10	1.03	1.04	1.08
	$a_{\mu}^{\mathrm{EXP}}-a_{\mu}^{\mathrm{SM}}$	9.69	8.48	10.47	7.82
	M_W [GeV]	0.10	1.50	0.24	1.54
	R_ℓ	0.95	1.09	1.09	1.12
	$A_{ m fb}(b)$	8.16	6.64	5.68	6.43
	$A_\ell(\mathrm{SLD})$	2.49	3.51	4.36	3.68
	$\sigma_{ m had}^0$	2.58	2.50	2.55	2.50
	ATLAS 5/fb jets $+ \not\!\!\!E_T$	0.09	1.73	0.02	1.18
	${ m BR}(B_s o \mu^+ \mu^-)$	2.52	1.22	1.59	1.70
	XENON100	0.13	0.12	0.14	0.13
6					

arxiv:1207.7315

Simple cMSSM struggling to describe all data.

g-2 is the result with largest tension against simplest SUSY models

This could be a fluctuation or could be telling us something

LHC Smuon limits

At LHC slepton sector is not as well explored as squark/gluino sector

"Looking to (SUSY) models with a different connection between the coloured and uncoloured sector, not only seems timely now, but mandatory."

John Ellis et al., arxiv:1207.7315

Much of phase space that gives the large a_{μ} of BNL is not covered by LHC

Scenario that LHC sees BSM

LHC: 100 fb⁻¹ at 14 TeV

Sign of contribution of SUSY to (g-2) determined by $sgn(\mu)$

 $g - 2 : \tan \beta = 9 \pm 1$ LHC : $\tan \beta = 9 \pm 5$

g-2 and LHC results can complement each other and resolve model degeneracy

New Physics that LHC cannot detect

The new g-2 experiment @ FNAL (E989)

Aiming to reduce experimental uncertainty by factor of 4 with respect to BNL exp.

- 1. Use established technique (& apparatus)
- Increase # muons by factor of 21 to reduce statistical error by over 4.
- 3. Reduce systematics by factor of 3.

 $\begin{bmatrix} 54 \text{ (stat.)} \oplus 33 \text{ (syst.)} \rightarrow 11 \text{ (stat.)} \oplus 11 \text{ (syst.)} \end{bmatrix} \times 10^{-11}$ $0.54 \text{ ppm} \rightarrow 0.14 \text{ ppm}$

BNL Storage Ring

Mark Lancaster : New Muon g-2 Experiment

Experimental Technique

Inject muons into a storage ring (B = 1.45 T)

Measure rate of precession of spin with respect to momentum direction.

Exploit property that direction of e^+ from μ^+ decay is strongly (anti)correlated with μ^+ spin for highest energy e^+

- 1. Measure e⁺ with E > 1.9 GeV in 24 calorimeters vs time (30 μs after injection)
- 2. Measure B field to a precision of 0.1 ppm

The data

$$N(t) = N_0 \exp(-t/\gamma \tau_{\mu}) \left[1 - A\cos(\omega_a t + \phi)\right]$$

Experimental Technique

But particle trajectory in B-field is a spiral and need E-field to keep in orbit

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\sqrt{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

4 electric quadrupoles for focussing

Cancel the E-field contribution by judicious choice of γ : the "magic momentum" : 3.094 GeV

Mark Lancaster : New Muon g-2 Experiment

<complex-block>

These are being replaced to have a "kick" over a smaller time period to produce a more stable beam.

1.7m superconducting magnet with superconducting flux shield

Cancels main storage ring B-field by providing "cancelling" field BUT only at the injection point

This will be replaced with a new "open-end" design that increases muon acceptance and orbit stability over BNL experiment.

A Key Improvements over BNL experiment

1. Accelerator before storage ring

More muons at lower inst. rate with much reduced pion contamination

Proton accelerator mods almost complete since needed for NoVa.

Pbar accelerator complex being re-configured to provide muons.

Improvements over BNL experiment

Recycler

Muon campus groundbreaking

May 10 2013

Mark Lancaster : New Muon g-2 Experiment

mprovements

2. New inflector magnet, better kicker, better CBO damping

Kicker use Blumlein triaxial transmission line to reduce kick to < 100 ns.

- coupled with improved beam modeling

Improvements

3. B-field : uniformity and calibration will be improved

Additional field shimming, more frequent field mapping.

B-field improvements

Better knowledge of muon beam profile (simulation and straw trackers)

Improvements in trolley probes (position) & environment

 H_2 0-based ref. NMR probe -> ³He

300+ NMR probes in vacuum tank walls

Improvements

4. New detectors: improved stability, better handling of pileup

- Improved tracking (straws in vacuum)
- New segmented calorimeter
- New calibration system

Detector improvements

Straw tracker

 coupled with improved detector modeling

PbF₂ + 16-channel MPCC

Movement of the ring from BNL to FNAL

Must be shipped in one piece !

Stage-1: Call U-Haul & willing PhD students

Mark Lancaster : New Muon g-2 Experiment

And Spokesperson & Project Manager

Most small kit already at FNAL

Mark Lancaster : New Muon g-2 Experiment

Yokes etc arriving at FNAL now

Mark Lancaster : New Muon g-2 Experiment

Ring Removal

5 miles by road on Long Island

Mark Lancaster : New Muon g-2 Experiment

Ring Removal : Plan-A

Not selected !

Mark Lancaster : New Muon g-2 Experiment

Ring Removal : Plan-B

Mark Lancaster : New Muon g-2 Experiment

30 miles by road to FNAL

Ring shipment begins in June

80 collaborators in 16 US institutes + 30 (Germany, Netherlands, China, Russia, Italy, UK)

Mark Lancaster : New Muon g-2 Experiment

V-PARC g-2 : Several Challenges

Getting a sufficient rate of ultra cold muons (require 10⁶ /sec and 10¹² e⁺)

Avoiding pile-up issues in detector with the high rate

Achieving v. small vertical beam divergence : $\Delta p_T/p_T = 10^{-5}$

Requires advances in "muonium" production

- target materials e.g. nano-structured SiO₂
- lasers (pulsed 100 µJ VUV) to ionise muonium (x100)

JPARC g-2

R & D continuing on cold muon yield and ionisation efficiency

Potential to achieve same precision as FNAL with very different systematics but likely on a timescale after the FNAL experiment.

VPARC g-2 Silicon Tracker

High granularity Silicon vane tracker (exploiting (Super)KEKB electronics)) Event rate : 1 MHz

Need to reconstruct e+ track from lots of hits, particularly for earliest events.

Conclusion

It's clear that the path to a credible BSM theory isn't as smooth as some had anticipated.

We need to cast the net wide to establish a credible BSM theory.

Muon g-2 is a critical number in establishing (or not) integrity of BSM models in concert with the LHC : particular the non-coloured sector + BSM that flips chirality.

The new FNAL experiment will take data in 2016 and measure g-2 to a precision of 0.14 ppm. The most precise accelerator-based measurement in particle physics.

If present anomaly persists it could establish BSM physics at 5-9 σ

Mark Lancaster : New Muon g-2 Experiment

Precession Systematics

E821 Error	Size	Plan for the New $g-2$ Experiment	
	[ppm]		[ppm]
Gain changes	0.12	Better laser calibration and low-energy threshold	0.02
Lost muons	0.09	Long beamline eliminates non-standard muons	0.02
Pileup	0.08	Low-energy samples recorded; calorimeter segmentation	0.04
CBO	0.07	New scraping scheme; damping scheme implemented	0.04
E and pitch	0.05	Improved measurement with traceback	0.03
Total	0.18	Quadrature sum	0.07

B field Systematics

Source of errors		Size [ppm]				
	1998	1999	2000	2001	future	
Absolute calibration of standard probe	0.05	0.05	0.05	0.05	0.05	
Calibration of trolley probe	0.3	0.20	0.15	0.09	0.06	
Trolley measurements of B_0	0.1	0.10	0.10	0.05	0.02	
Interpolation with fixed probes	0.3	0.15	0.10	0.07	0.06	
Inflector fringe field	0.2	0.20	-	-	-	
Uncertainty from muon distribution	0.1	0.12	0.03	0.03	0.02	
Others		0.15	0.10	0.10	0.05	
Total systematic error on ω_p	0.5	0.4	0.24	0.17	0.11	initia
					\checkmark	

0.07 ppm

All about systematics : injection

Present inflector scattered away 50% of muons R&D on "open-end" design

CERN/European Strategy

"Experiments studying quark flavour physics investigating dipole moments, searching for charged- lepton flavour violation and performing other precision measurements at lower energies, such as those with neutrons, **muons** and antiprotons, may give access to higher energy scales than direct particle production or put fundamental symmetries to the test. They can be based in national laboratories, with a moderate cost and smaller collaborations. Experiments in Europe with unique reach should be supported, as well ^{QS} participation in experiments in other regions, especially

Japan and the US."

J-PARC Muon g-2

	BNL-E821	Fermilab	This Experiment	
Muon momentum	3.09 (GeV/c	$0.3~{ m GeV}/c$	
γ	29	0.3	3	
Storage field	B = 1	.45 T	$B=3.0~{\rm T}$	
Focusing field	Electric	c Quad.	none/very weak	
$\#$ of detected e^+	5.0×10^{9}	1.8×10^{11}	1.5×10^{12}	
$\#$ of detected e^-	3.6×10^{9}	_	-	
Statistical precision	0.46 ppm	0.1 ppm	0.1 ppm	

Clearly Pros and Cons of two approaches:

Cold muons : no pion contamination, no coherent betatron oscillations BUT : μ⁺ only and as yet unproven method "Hot" muons : proven technology, utilising existing accelerator etc

FNAL vs BNL : more muons, fewer pions

Neutron EDM is one nearest to reaching SM prediction while also being in the "BSM" region.

Muon EDM is 2nd generation and free of nuclear/molecular complications.

Like flavour violation, since SM is heavily suppressed any observation is new physics.

Expect muon EDM below 10^{-22} and likely below 10^{-24} (SM = 0)

Present limit (BNL) is 1.8 x 10⁻¹⁹.

FNAL (g-2) should reach 10⁻²¹ looking at vertical angle, 90⁰ out of phase with g-2 modulation

Muon unique since 2nd generation & it's a single particle measurement unlike e/n EDM.

Synergy with LHC

Gauge mediated SUSY breaking models with enhanced $h
ightarrow \gamma \gamma$

A larger $h \rightarrow \gamma \gamma$ and (g-2) points to light staus that are quasi degenerate to neutralino (evading LEP)

g-2 and CLFV

Beyond Vanilla BSM models tend to be characterised by large flavour symmetry and small SUSY breaking

Expect **SMALL** deviations from SM:

- precision measurements : (g-2)

- processes that are zero in SM : EDMs, cLFV.

cLFV and g-2

