Combination of all searches and extraction of properties of the Higgs boson (ATLAS and CMS)

Marcello Fanti

(on behalf of ATLAS and CMS collaborations)

University of Milano and INFN

In the search for the Higgs boson, ATLAS and CMS reported evidence for a new resonance, decaying as:

 $H \to \gamma \gamma$ $H \to ZZ^* \to 4\ell$ $H \to WW^* \to \ell \nu \ell \nu$

with a mass $m_H\simeq 125~{
m GeV}$

"We have a discovery!"

Is the new particle indeed the Higgs boson?

If yes, it should have some typical "fingerprints":

- it should have spin=0 and even parity: $J^P = 0^+$
- it should have couplings proportional to the masses of the decay products

The "LHC run-1" ended in December 2012 Overall integrated luminosity : $\int L dt \sim 5 \text{ fb}^{-1}$ at $\sqrt{s} = 7 \text{ TeV}$ $\int L dt \sim 20 \text{ fb}^{-1}$ at $\sqrt{s} = 8 \text{ TeV}$

ATLAS and CMS analysed the complete data sets for the $\gamma\gamma$, $Z\!Z^*$, $W\!W^*$ decay channels

In this talk:

- observation in the bosonic decay channels
- ${\scriptstyle \bullet}$ mass measurements from $\gamma\gamma, ZZ^*$ combination
- signal strength (by channel and combined)
- effective couplings (from combination of decay channels)
- spin and parity (by channel and combined)

Observations of the new boson: at ATLAS ...

... and at CMS

... it would be the last missing piece of the Standard Model;

... its mass m_H would be the last unknown parameter of the model

$$\mathcal{V}(\phi) = \lambda \left(\phi^{\dagger}\phi
ight)^2 - \mu^2 \left(\phi^{\dagger}\phi
ight)$$

VEV:
$$v = \mu/\sqrt{\lambda} = 2m_W/g$$

mass: $m_H = \sqrt{2} \cdot \mu$

All the other properties would become calculable:couplings to the electroweak gauge bosons:

 $gm_W \cdot (HWW) + \frac{gm_Z}{2\cos\theta_W} \cdot (HZZ)$

• Yukawa couplings to all fermions

$$\frac{m_f}{v} \cdot \left(H\bar{f}f\right)$$

at the observed mass many decay modes are accessible: $m_H \approx 125~{
m GeV}$

Statistical models used in measurements

Extended likelihood function: $\mathcal{L}(\vec{\alpha}; \vec{\nu})$:

$$-\ln \mathcal{L}(\vec{\alpha}; \vec{\nu}) = (n_s + n_b) - \sum_{e} \left[\underbrace{n_s \cdot f_s(\vec{x}_e | \vec{\alpha}, \vec{\nu}_s)}_{\text{ancillary pdfs}} + \underbrace{n_b \cdot f_b(\vec{x}_e | \vec{\nu}_b)}_{\text{ancillary pdfs}} \right]$$

Test statistic: "Profiled Likelihood Ratio" (PLR)

 $n_{\rm s}, n_{\rm h}$: signal / background yields $\vec{\mathbf{x}}$: observables f_s, f_b : signal / background pdfs $\vec{\alpha}$: parameters of interest (e.g.: mass, cross-section, spin, ...) $\vec{\nu}$: "nuisance parameters" (shape parameters, systematics, ...) π_k : pdfs obtained from auxiliary measurements

 $q_{\vec{\alpha}} = -2\ln\Lambda(\vec{\alpha}) = -2\ln\frac{\mathcal{L}(\vec{\alpha};\hat{\hat{\nu}}(\vec{\alpha}))}{\mathcal{L}(\hat{\alpha};\hat{\nu})}$ $\leftarrow \mathcal{L}(\vec{\alpha}; \hat{\vec{\nu}}(\vec{\alpha})): \text{ likelihood for fixed } \vec{\alpha} \text{ and "profiled" } \vec{\nu} \\ \leftarrow \mathcal{L}(\hat{\alpha}; \hat{\nu}): \text{ maximum likelihood for free } \vec{\alpha}, \vec{\nu}$ 2 In A 8 α_2 95% CL

> 0.6 0.8

95% CL $-2 \ln \Lambda < 6.0$ 68% CL $-2 \ln \Lambda < 2.3$ α_1

Wilks' theorem : if $\vec{\alpha} = \vec{\alpha}^{true}$, then $q_{\vec{\alpha}}$ follows a χ^2_D distribution, with D being the number of parameters of interest $\vec{\alpha}$

 \Rightarrow compute confidence intervals for $\vec{\alpha}$

M. Fanti (Physics Dep., UniMi)

Combined Higgs properties (ATLAS+CMS)

1.2 1.4 1.6

1.8

2.2

α

68% CL

1

Mass measurement

(ATLAS-CONF-2013-014 ; CMS PAS HIG-13-005)

Mass measurements

ATLAS

Measurements from separate decay channels: $m_H^{\gamma\gamma} = 126.8 \pm 0.2(stat) \pm 0.7(syst) \text{ GeV}$ $m_H^{4\ell} = 124.3^{+0.6}_{-0.5}(stat)^{+0.5}_{-0.3}(syst) \text{ GeV}$

CMS

Measurements from separate decay channels:

 $m_H^{\gamma\gamma} = 125.4 \pm 0.5(stat) \pm 0.6(syst) \text{ GeV}$ $m_H^{4\ell} = 125.8 \pm 0.5(stat) \pm 0.2(syst) \text{ GeV}$

 $\hat{m}_H = 125.5 \pm 0.2(stat)^{+0.5}_{-0.6}(syst) \text{ GeV}$

 $\hat{m}_H = 125.7 \pm 0.3(stat) \pm 0.3(syst) \text{ GeV}$

 $(e, \mu \text{ energy scales from } J/\psi, \Upsilon, Z \rightarrow \ell \ell$; γ energy scale from $Z \rightarrow e^+e^-$ and $e \rightarrow \gamma$ extrapolation)

M. Fanti (Physics Dep., UniMi)

Couplings measurements

(ATLAS-CONF-2013-034 , CMS PAS HIG-13-005)

Production modes and categories

More exclusive channels have a better signal-tobackground ratio \Rightarrow introduce categories

Moreover, this provides sensitivity to production modes (therefore to fermion/vector couplings) Possible "production tags":

- two hard jets with large $|\eta|$ and large $m_{jj} \Rightarrow \text{VBF}$ mode
- two jets with small $m_{jj} \Rightarrow \mathsf{VH}$ mode with $\mathsf{V} \rightarrow jj$
- identified lepton $(e, \mu) \Rightarrow \mathsf{VH}$ mode with $\mathsf{V} \rightarrow \ell(\ell)$
- \bullet missing transverse energy \Rightarrow ZH mode with Z $\rightarrow \nu \nu$
- "untagged" \Rightarrow mainly ggF (divide in more categories according to e.g. photons' η and conversion status)

CAVEAT: "prod tags" are enriched by specific production modes, but are not pure samples

Signal strengths

By definition, $\mu = \frac{\sigma^{\text{obs}}}{\sigma_{SM}}$

($\mu\simeq 1$ means compatibility with SM Higgs boson signal)

ATLAS

CMS

 $\hat{\mu} = 1.30 \pm 0.13(\textit{stat}) \pm 0.14(\textit{syst})$

13% compatibility among channels9% compatibility with SM

$\hat{\mu}=0.80\pm0.14$

50% compatibility among decay channels 37% compatibility among production tags

M. Fanti (Physics Dep., UniMi)

・ロト・日本 A B F A B F A B P A C

Effective couplings

Assume a tree-level model for a process $ii \rightarrow H \rightarrow ff$ with effective couplings:

$$\sigma(ii \to H) \times BR(H \to ff) = \frac{\sigma_{ii}\Gamma_{ff}}{\Gamma_H} = \overbrace{\sigma_{SM}(ii \to H) \times BR_{SM}(H \to ff)}^{\text{SM prediction}} \times \left[\frac{\kappa_i^2 \cdot \mu}{\kappa_H^2}\right]$$

 $\kappa_{i,f}$ are scale factors wrt Standard Model couplings $g_{i,f}^{SM}$ ($\kappa_{i,f} \simeq 1$ means compatibility with SM Higgs boson)

Some assumptions

 ${\scriptstyle \bullet}$ universality of $\kappa {\rm 's}$ for fermions and for gauge bosons:

 $\kappa_t = \kappa_b = \kappa_\tau = \kappa_F$ and $\kappa_W = \kappa_Z = \kappa_V$

- gg-fusion $gg \to H$ mediated by a top loop as in SM $\Rightarrow \kappa_g = \kappa_F$
- $H \rightarrow \gamma \gamma$ decay mediated by W and top loops $\Rightarrow \kappa_{\gamma}^{2} = (1.26 \cdot \kappa_{V} - 0.26 \cdot \kappa_{F})^{2}$ (at $m_{H} = 125.5$) (sensitive to relative sign between κ_{F}, κ_{V})
- in SM $BR(H \rightarrow f\bar{f}, gg) = 0.75$ $\Rightarrow \kappa_H^2 = 0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2$ (at $m_H = 125.5$)

Fermion vs gauge boson couplings factors

ATLAS

The difference between ATLAS and CMS is due to the large $H \rightarrow \gamma \gamma$ yield observed by ATLAS

Testing the custodial symmetry

Assume κ_W, κ_Z independent, test $\lambda_{WZ} \stackrel{\text{def}}{=} \frac{\kappa_W}{\kappa_Z}$

ATLAS

CMS

 $\lambda_{WZ} \in [0.73; 1.00]$

Testing possible new physics in loops

ggH and $H\gamma\gamma$ interactions in the SM are mediated by loops \Rightarrow particularly sensitive to new physics beyond SM

Assume all $\kappa=1$ except κ_γ and κ_g left free

ATLAS

CMS

Testing alternative Higgs models (CMS)

In some two-doublet models (2HDM) up-type and down-type fermions couple to different Higgs fields ... or leptons and quarks may have different couplings

Probing up/down fermion couplings

$$\lambda_{du} \stackrel{\text{def}}{=} rac{\kappa_d}{\kappa_u} \in [1.00; 1.60]$$

Probing quark/lepton couplings

 $\lambda_{\ell q} \stackrel{\text{def}}{=} rac{\kappa_{\ell}}{\kappa_{q}} \in [0.89; 1.62]$

Spin and parity measurements

(ATLAS-CONF-2013-029 , ATLAS-CONF-2013-031 , ATLAS-CONF-2013-013 , ATLAS-CONF-2013-040)

(CMS PAS HIG-13-002 , CMS PAS HIG-13-003 , CMS PAS HIG-13-005)

Spin measurements: introduction

The observed decays into $\gamma\gamma$, ZZ^* , WW^* imply integer spin The decay into $\gamma\gamma$ excludes the spin-1 possibility (Landau-Yang theorem)

A Standard Model Higgs boson must have $J^P = 0^+$ \Rightarrow the interesting alternative hypotheses are 0^- , 2^{\pm} (but 1^{\pm} are also investigated)

In practice, the most generic lagrangian for a spin-2 particle contains many free parameters, and it would impossible to exclude it in the most general case.

 \Rightarrow we chose the "minimal coupling" scenario, 2_m^+ — inspired by a graviton model.

Moreover, the production mechanisms $gg \to (2_m^+)$ and $q\bar{q} \to (2_m^+)$ give rise to different polarization states, hence different angular distributions.

CMS tests both production modes. ATLAS explores several possible "mixtures":

$$f_{q\bar{q}} \stackrel{\text{def}}{=} rac{\sigma(q\bar{q} o 2_m^+)}{\sigma(q\bar{q} o 2_m^+) + \sigma(gg o 2_m^+)} \in \{ 0.00 \ , \ 0.25 \ , \ 0.50 \ , \ 0.75 \ , \ 1.00 \ \}$$

Test statistic: here we compare alternative hypotheses $\mathcal{H}_{0^+}, \mathcal{H}_{J_{alt}^P}$ \Rightarrow use Ratio of Profiled Likelihoods (RPL) $q = \ln \frac{\mathcal{L}(\mathcal{H}_{0^+}; \hat{\hat{\nu}}(\mathcal{H}_{0^+}))}{\mathcal{L}(\mathcal{H}_{J_{\mu}^P}; \hat{\hat{\nu}}(\mathcal{H}_{J_{\mu}^P}))}$

Spin measurement in the H $\rightarrow \gamma \gamma$ channel (ATLAS)

Low S/B ratio, $\approx 3\% \Rightarrow$ crucial to have good understanding of the background shape and normalization (extracted from data sidebands) \Rightarrow use $\cos \theta^*$ and $m_{\gamma\gamma}$ as observables

data always favour 0⁺ hypothesis

Spin measurement in the H \rightarrow WW* \rightarrow e $u\mu\nu$ channel

(Note the opposite trend vs $f_{q\bar{q}}$ wrt $\gamma\gamma$)

Spin measurement in the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel

The complete reconstruction of the final state gives access to the polarization of the resonance and of the Z bosons

Sensitive observables:

• 2 invariant masses m_{12} , m_{34} (from $Z \rightarrow \ell_1 \ell_2$ and $Z^* \rightarrow \ell_3 \ell_4$)

• 5 angles θ^* , Φ_1 , Φ , θ_1 , θ_2 Cases $J^P = 0^{\pm}$: isotropic in $\cos \theta^*$, Φ_1 ; Φ , $\theta_{1,2}$, m_{34} sensitive to parity Cases $J^P = 1^{\pm}, 2^{\pm}_m$: all variables are discriminant \Rightarrow multivariate analysis

from CMS:

(ATLAS results in backup material)

data always favour 0⁺ hypothesis

Test of $J^P = 2_m^+$: combination

Combination of $\gamma\gamma$, $ZZ^* \rightarrow 4\ell$, $WW^* \rightarrow e\nu\mu\nu$ decay channels (from ATLAS)

M. Fanti (Physics Dep., UniMi)

・ロト・4回ト・モート ヨー うくの

Summary

The state of the art

ATLAS and CMS have analysed all LHC run-1 data for $\gamma\gamma$, $ZZ^* \rightarrow 4\ell$, $WW^* \rightarrow \ell\nu\ell\nu$ channels ($\sim 5 \text{ fb}^{-1} @ \sqrt{s} = 7 \text{ TeV} + \sim 20 \text{ fb}^{-1} @ \sqrt{s} = 8 \text{ TeV}$) $\gamma\gamma$ and ZZ^* channels have now > 5 σ evidence each, at least from one experiment — WW^* channel reaches $\sim 4\sigma$ $b\bar{b}$ and $\tau^+\tau^-$ not yet well established

The "new particle" has a mass measured as:
$$\begin{cases} m_H^{ATLAS} = 125.5 \pm 0.2(stat)^{+0.5}_{-0.6}(syst) \text{ GeV} \\ m_H^{CMS} = 125.7 \pm 0.3(stat) \pm 0.3(syst) \text{ GeV} \end{cases}$$

It is compatible with a state $J^P = 0^+$. Alternative state 2⁺ is disfavoured at > 99.9% CL. States 0⁻, 1[±] are disfavoured at > 99% CL

All couplings' measurements do not show any significant deviation from the Standard Model predictions — but measurements are precise at $\geq 20\%$ (at best!)

"New results indicate that particle discovered at CERN is a Higgs boson" — CERN press release

Geneva, 14 March 2013. At the Moriond Conference today, the ATLAS and CMS collaborations at CERN's Large Hadron Collider (LHC) presented preliminary new results that further elucidate the particle discovered last year. [...] The new particle is looking more and more like a Higgs boson [...] It remains an open question, however, whether this is the Higgs boson of the Standard Model of particle physics, or possibly the lightest of several bosons predicted in some theories that go beyond the Standard Model. [...] To characterize all of the decay modes will require much more data from the LHC.

More material

Mass measurement at ATLAS

Measurements from separate decay channels: $H \rightarrow \gamma \gamma \Rightarrow m_H^{\gamma \gamma} = 126.8 \pm 0.2(stat) \pm 0.7(syst) \text{ GeV}$ $H \rightarrow 4\ell \Rightarrow m_H^{4\ell} = 124.3^{+0.6}_{-0.5}(stat)^{+0.5}_{-0.3}(syst) \text{ GeV}$

Systematics:

- muon energy scale (dominant for $H \rightarrow 4\ell$): (calibrated on $Z \rightarrow \mu^+\mu^-$, $\Upsilon \rightarrow \mu^+\mu^-$) $\Rightarrow 0.2\%$ on $m_{4\mu}$
- electromagnetic scale (especially for $H \rightarrow \gamma \gamma$)
 - scale from $Z \rightarrow e^+e^-$ and $e \rightarrow \gamma$ extrapolation : 0.3%
 - \bullet material in front of the calorimeter : 0.3% $\,-\,$ 0.7%
 - ${\scriptstyle \bullet}$ presampler/calorimeter relative calibration : 0.1%
 - E_1/E_2 , linearity, lateral leakage, ...: 0.32%
 - \Rightarrow overall 0.55% on $m_{\gamma\gamma}$ (\Rightarrow 0.7 GeV)

Combined mass value:

$$\hat{m}_{H} = 125.5 \pm 0.2 (\textit{stat})^{+0.5}_{-0.6} (\textit{syst}) \; ext{GeV}$$

Compatibility between $\gamma\gamma$ and 4ℓ channels: 2% to 8% (depending on the choice of the ancillary pdfs for EM scales and material in front of the calorimeter)

・ロト * 御 ト * 注 ト * 注 ト 注 の < ()</p>

Measurements from separate decay channels: $H \rightarrow \gamma \gamma \Rightarrow m_H^{\gamma \gamma} = 125.4 \pm 0.5(stat) \pm 0.6(syst) \text{ GeV}$ $H \rightarrow 4\ell \Rightarrow m_H^{4\ell} = 125.8 \pm 0.5(stat) \pm 0.2(syst) \text{ GeV}$

Mass resolution assigned individually to each event before fitting

Systematics:

- electron and muon energy scale: assessed from J/ψ , Υ , $Z \rightarrow \ell \ell$ $\Rightarrow 0.1\%$ on $m_{4\mu}$ and 0.3% on m_{4e}
- photon energy scale:
 - $Z \rightarrow e^+e^-$ plus $e \rightarrow \gamma$ extrapolation
 - \Rightarrow overall 0.47% on $m_{\gamma\gamma}$

Combined mass value:

$\hat{m}_{H} = 125.7 \pm 0.3(stat) \pm 0.3(syst) \; \text{GeV}$

Signal strength by production mechanisms

We define two signal strengths, relative to different production mechanisms:

- μ_{ggF+ttH} for productions mediated by couplings to fermions (especially the *ttH* vertex)
- μ_{VBF+VH} for productions mediated by couplings to gauge bosons (*WWH* and *ZZH* vertices)

ATLAS

Fermion vs gauge boson couplings factors (by channels)

(the contributions from different decay channels)

CMS

 κ_{V}

$$\begin{split} A(X \to VV) &= \Lambda^{-1} \left[2g_1 t_{\mu\nu} f^{*1,\mu\alpha} f^{*2,\nu\alpha} + 2g_2 t_{\mu\nu} \frac{q_\alpha q_\beta}{\Lambda^2} f^{*1,\mu\alpha} f^{*2,\nu\alpha} \right. \\ &+ g_3 \frac{\tilde{q}^\beta \tilde{q}^\alpha}{\Lambda^2} t_{\beta\nu} (f^{*1,\mu\nu} f^{*2}_{\mu\alpha} + f^{*2,\mu\nu} f^{*1}_{\mu\alpha}) + g_4 \frac{\tilde{q}^\nu \tilde{q}^\mu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} f^{*(2)}_{\alpha\beta} \\ &+ m_V^2 \left(2g_5 t_{\mu\nu} \epsilon^{*\mu}_1 \epsilon^{*\nu}_2 + 2g_6 \frac{\tilde{q}^\mu q_\alpha}{\Lambda^2} t_{\mu\nu} (\epsilon^{*\nu}_1 \epsilon^{*\alpha}_2 - \epsilon^{*\alpha}_1 \epsilon^{*\nu}_2) + g_7 \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} \epsilon^{*}_1 \epsilon^{*}_2 \right) \\ &+ g_8 \frac{\tilde{q}_\mu \tilde{q}_\nu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} \tilde{f}^{*(2)}_{\alpha\beta} + g_9 t_{\mu\alpha} \tilde{q}^\alpha \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu}_1 \epsilon^{*\rho}_2 q^\sigma \\ &+ \frac{g_{10} t_{\mu\alpha} \tilde{q}^\alpha}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} q^\rho \tilde{q}^\sigma (\epsilon^{*\nu}_1 (q\epsilon^{*}_2) + \epsilon^{*\nu}_2 (q\epsilon^{*}_1)) \right], \end{split}$$

<ロト 4 課 ト 4 語 ト 4 語 ト 語 の Q ()</p>

More spin results in WW^{*}, ZZ^{*} channels

from WW^{*} — CMS

from ZZ^{*} — ATLAS

32 / 32

10

15