Introduction	IDM	$h \rightarrow \gamma \gamma$ rate	Results	Summary
00	0000	0000	0000	0

Two photon decay rate of the Higgs boson in the Inert Doublet Model

Bogumiła Świeżewska in collaboration with M. Krawczyk, D. Sokołowska, P. Swaczyna, based on arXiv:1212.4100 [hep-ph], arXiv:1304.7757[hep-ph], arXiv:1303.7102[hep-ph]

Faculty of Physics, University of Warsaw

24.05.2013 Photon 2013, Paris

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Introduction	IDM	$h o \gamma \gamma$ rate 0000	Results	Summary
00	0000		0000	O
Outlook				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Motivation
- Introduction to IDM
- $h \rightarrow \gamma \gamma$ rate
- Numerical results
 - Bounds on scalars' masses
 - Bounds on couplings
- Summary and outlook

Introduction	IDM	$h o \gamma \gamma$ rate 0000	Results	Summary
••	0000		0000	O
Why $h \to \gamma \gamma$	/?			

- Important observation channel of the Higgs boson at the LHC
- Experimental hints on deviation from the SM value
- Sensitive to the existence of new charged particles well suited for studying different 2HDMs
- Signal strength sensitive to the existence of invisible decay channels can provide information about extra scalars

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ④ Q @

Introduction	IDM	$h o \gamma \gamma$ rate 0000	Results	Summary
O•	0000		0000	O
Why IDM?				

- IDM a simple extension of the Standard Model (a special 2HDM)
- Rich phenomenology
- $\rho = 1$ at the tree-level
- DM candidate
- Interesting framework for the study of the thermal evolution of the Universe

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Introduction	IDM	$h \rightarrow \gamma \gamma$ rate	Results	Summary
00	0000	0000	0000	0

Lagrangian of the Inert Doublet Model

$$\mathcal{L} = \mathcal{L}_{gf}^{SM} + \mathcal{L}_{H} + \mathcal{L}_{Y}$$

- \mathcal{L}_{gf}^{SM} SM Lagrangian describing interactions of fermions and gauge bosons
- \mathcal{L}_{H} Lagrangian of the scalar sector: ϕ_{S} and ϕ_{D}

$$\mathcal{L}_{\mathrm{H}} = (D^{\mu}\phi_{S})(D_{\mu}\phi_{S})^{\dagger} + (D^{\mu}\phi_{D})(D_{\mu}\phi_{D})^{\dagger} - \mathsf{V}$$

V – scalar potential

• \mathcal{L}_{Y} - Yukawa Lagrangian describing interactions of scalars with fermions – only ϕ_{S} couples to fermions

Introduction	IDM	$h ightarrow \gamma \gamma$ rate	Results	Summary
00	0000	0000	0000	0

Scalar potential

[N. G. Deshpande, E. Ma, Phys. Rev. D 18 (1978) 2574, J. F. Gunion, H. E. Haber, G. Kane,
 S. Dawson, The Higgs Hunter's Guide, 1990 Addison-Wesley, I. F. Ginzburg, K. A. Kanishev,
 M. Krawczyk, D. Sokołowska, Phys. Rev. D 82 (2010) 123533]

$$V = -\frac{1}{2} \left[m_{11}^2 (\phi_S^{\dagger} \phi_S) + m_{22}^2 (\phi_D^{\dagger} \phi_D) \right] + \frac{1}{2} \left[\lambda_1 (\phi_S^{\dagger} \phi_S)^2 + \lambda_2 (\phi_D^{\dagger} \phi_D)^2 \right] + \\ + \lambda_3 (\phi_S^{\dagger} \phi_S) (\phi_D^{\dagger} \phi_D) + \lambda_4 (\phi_S^{\dagger} \phi_D) (\phi_D^{\dagger} \phi_S) + \\ \frac{1}{2} \lambda_5 \left[(\phi_S^{\dagger} \phi_D)^2 + (\phi_D^{\dagger} \phi_S)^2 \right]$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ④ Q @

- **D** symmetry: $\phi_D \rightarrow -\phi_D, \phi_S \rightarrow \phi_S$
- \mathcal{L} *D*-symmetric
- *D*-symmetric vacuum state $\langle \phi_S \rangle = \frac{v}{\sqrt{2}}, \langle \phi_D \rangle = 0$

Introduction IDM	$h \rightarrow \gamma \gamma$ rate	Results	Summary
00	0000	0000	0

Particle spectrum of IDM

[E. M. Dolle, S. Su, Phys. Rev. D 80 (2009) 055012, L. Lopez Honorez, E. Nezri, F. J. Oliver, M. Tytgat, JCAP 0702 (2007) 028, D. Sokołowska, arXiv:1107.1991 [hep-ph]]

- φ₅: h SM-like Higgs boson, tree-level couplings to fermions and gauge bosons like in the SM.
 Deviation from SM in loop couplings possible!
- ϕ_D : *H*, *A*, H^{\pm} dark scalars, no tree-level couplings to fermions
- D symmetry exact ⇒ lightest D-odd particle stable
 ⇒ DM candidate
- DM= H, so $M_H < M_{H^{\pm}}$, M_A
- Three regions of DM mass consistent with astrophysical observations (WMAP: $0.1018 < \Omega_{DM}h^2 < 0.1234$):

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ④ Q @

- $M_H \lesssim 10 \, {
 m GeV}$
- $40 \,{
 m GeV} < M_H < 150 \,{
 m GeV}$
- $M_H \gtrsim 500 \,\mathrm{GeV}$

Introduction	IDM	$h o \gamma \gamma$ rate	Results	Summary
00	000●	0000	0000	O
Constraints				

- Vacuum stability: scalar potential V bounded from below
- **Perturbative unitarity**: eigenvalues Λ_i of the high-energy scattering matrix fulfill the condition $|\Lambda_i| < 8\pi$
- Existence of the Inert vacuum: Inert state a global minimum of the scalar potential
- *H* as DM candidate: $M_H < M_A$, $M_{H^{\pm}}$
- Electroweak Precision Tests (EWPT): the values of *S* and *T* parameters lie within 2σ ellipses in the *S*, *T* plane, (central values: $S = 0.03 \pm 0.09$, $T = 0.07 \pm 0.08$, with correlation equal to 87%)
- LEP bounds on the scalars' masses
- LHC: $M_h \approx 125 \text{ GeV}$

Introduction	IDM	$h \rightarrow \gamma \gamma$ rate	Results	Summary
00	0000	•000	0000	0

2-photon decay rate of the Higgs boson

[Q.-H. Cao, E. Ma, G. Rajasekaran, Phys. Rev. D 76 (2007) 095011, P. Posch, Phys. Lett. B696 (2011) 447, A. Arhrib, R. Benbrik, N. Gaur, Phys. Rev. D85 (2012) 095021, BŚ, M. Krawczyk, arXiv:1212.4100 [hep-ph]]

$$R_{\gamma\gamma} - 2\text{-photon decay rate}$$

$$R_{\gamma\gamma} = \frac{\sigma(pp \to h \to \gamma\gamma)^{IDM}}{\sigma(pp \to h \to \gamma\gamma)^{SM}} \approx \frac{\Gamma(h \to \gamma\gamma)^{IDM}}{\Gamma(h \to \gamma\gamma)^{SM}} \frac{\Gamma(h)^{SM}}{\Gamma(h)^{IDM}}$$

Largest contribution to the production is from gg fusion
 σ(gg → h)SM = σ(gg → h)^{IDM} (not true in other 2HDMs)

Two sources of deviation from $R_{\gamma\gamma} = 1$:

- invisible decays $h \to HH$, $h \to AA$ in $\Gamma(h)^{IDM}$
- charged scalar loop in $\Gamma(h \to \gamma \gamma)^{IDM}$

Introduction	IDM	$h \to \gamma \gamma$ rate 0000	Results	Summary
00	0000		0000	O
Invisible d	lecays			

$$\begin{split} \Gamma(h) = &\Gamma(h \to b\overline{b}) + \Gamma(h \to WW^*) + \Gamma(h \to \tau^+\tau^-) + \Gamma(h \to gg) \\ &+ \Gamma(h \to ZZ^*) + \Gamma(h \to c\overline{c}) + \Gamma(h \to Z\gamma) + \Gamma(h \to \gamma\gamma) \\ &+ \Gamma(h \to HH) + \Gamma(h \to AA) \end{split}$$

- Invisible decays, if kinematically allowed, dominate over SM channels.
- Controlled by: M_H , M_A , $\lambda_{345} \sim hHH$, $\lambda_{345} \sim hAA$
- Plot for $M_A = 58$ GeV, $M_H = 50$ GeV

Introduction	IDM	$h \rightarrow \gamma \gamma$ rate	Results	Summary
00	0000	0000	0000	0

Charged scalar loop

[J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B 106 (1976) 292, M. A. Shifman, A. I. Vainshtein, M. B. Voloshin and V. I. Zakharov, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30, 1368 (1979)]

$$\Gamma(h \to \gamma \gamma)^{IDM} = \frac{G_F \alpha^2 M_h^3}{128\sqrt{2}\pi^3} \left| \mathcal{A}^{SM} + \frac{2\mathsf{M}_{\mathsf{H}^{\pm}}^2 + \mathsf{m}_{22}^2}{2\mathsf{M}_{\mathsf{H}^{\pm}}^2} \mathsf{A}_0\left(\frac{4\mathsf{M}_{\mathsf{H}^{\pm}}^2}{\mathsf{M}_{\mathsf{h}}^2}\right) \right|^2$$

- Constructive or destructive interference between SM and charged scalar contributions
- Controlled by $M_{H^{\pm}}$ and $2M_{H^{\pm}}^2 + m_{22}^2 \sim \lambda_3 \sim hH^+H^-$
- If invisible channels closed charged scalar contribution visible

Introduction	IDM	$h \rightarrow \gamma \gamma$ rate 0000	Results	Summary
00	0000		0000	O

$R_{\gamma\gamma} > 1$ – analytical solution

If invisible channels closed

$$R_{\gamma\gamma} = \frac{\Gamma(h \to \gamma\gamma)^{\text{IDM}}}{\Gamma(h \to \gamma\gamma)^{\text{SM}}}$$

 $\Rightarrow R_{\gamma\gamma} > 1$ can be solved analytically for M_{H^\pm} , m^2_{22}

- Constructive interference:
- $m_{22}^2 < -2M_{H^{\pm}}^2 \iff \lambda_{\mathbf{3}} < \mathbf{0})$
- with LEP bound:
 $$\label{eq:m22} \begin{split} m^2_{22} &< -9.8 \cdot 10^3 \, \mathrm{GeV}^2 \end{split}$$

- Destructive interference
- IDM contribution ≥
 2× SM contribution
- excluded by the condition for the Inert vacuum

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction	IDM	$h \rightarrow \gamma \gamma$ rate	Results	Summary
00	0000	0000	0000	0

$R_{\gamma\gamma}$ vs Dark Matter mass

[A. Arhrib, R. Benbrik, N. Gaur, Phys. Rev. D85 (2012) 095021, BŚ, M. Krawczyk, arXiv:1212.4100 [hep-ph]]

•
$$R_{\gamma\gamma}^{\rm max} \approx 3.4$$

- Invisible channels open ⇒
 no enhancement in
 h → γγ possible
- Enhanced $R_{\gamma\gamma}$ for $M_H, M_{H^{\pm}}, M_A > 62.5 \,\text{GeV}$
- $R_{\gamma\gamma} > 1 \Rightarrow$ very light DM excluded

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

SQA

Introduction	IDM	$h o \gamma \gamma$ rate	Results	Summary
00	0000	0000	0000	0

$R_{\gamma\gamma}$ vs charged scalar mass

Enhanced $R_{\gamma\gamma}$ possible for

- $m_{22}^2 < -9.8 \cdot 10^3 \, {
 m GeV}^2$
- any value of $M_{H^{\pm}}$

If $R_{\gamma\gamma} > 1.2$, then:

- M_{H^\pm} , $M_H \lesssim 154~{
 m GeV}$
- Only medium DM mass!

500

• Light charged scalar!

Introduction	IDM	$h o \gamma \gamma$ rate 0000	Results	Summary
00	0000		0000	O

$R_{\gamma\gamma}$ vs couplings

$$\lambda_3 \sim h H^+ H^-$$
, $\lambda_{345} \sim h H H^-$

• In the IDM λ_3 , $\lambda_{345} > -1.5$

æ

500

• $R_{\gamma\gamma} > 1 \Rightarrow \lambda_3$, $\lambda_{345} < 0$ • $R_{\gamma\gamma} > 1.3 \Rightarrow -1.46 < \lambda_3$, $\lambda_{345} < -0.24$

Introduction	IDM	$h \rightarrow \gamma \gamma$ rate	Results	Summary
00	0000	0000	0000	0

What if $R_{\gamma\gamma} < 1 - Preliminary$

[M. Krawczyk, D. Sokołowska, P. Swaczyna, B. Ś., work in progress]

Example: $0.7 < R_{\gamma\gamma} < 1$ and light DM ($M_H \lesssim 10$ GeV) \Rightarrow $|\lambda_{345}| \lesssim 0.04$

- λ_{345} controls the annihilation of DM, e.g. $HH \rightarrow h \rightarrow f\overline{f}$
- Too low relic abundance of DM to fit WMAP observations
- Low DM region excluded

Introduction	IDM	$h o \gamma \gamma$ rate	Results	Summary
00	0000	0000	0000	•
Summary				

- IDM in agreement with the data (LEP, LHC and WMAP)
- $h \rightarrow \gamma \gamma$ can provide important information about IDM, because it is sensitive to M_H and $M_{H^{\pm}}$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

- If substantial enhancement of $R_{\gamma\gamma}$
 - \Rightarrow Only medium masses of DM
 - \Rightarrow Light charged scalar
 - \Rightarrow Constrained couplings λ_{hHH} , $\lambda_{hH^+H^-}$
- If $0.7 < R_{\gamma\gamma} < 1$ and $M_H \lesssim 10 \, {
 m GeV}$
 - $\Rightarrow \ |\lambda_{345}| \lesssim 0.04$
 - \Rightarrow light DM excluded by WMAP

Introduction	IDM	$h o \gamma \gamma$ rate 0000	Results	Summary
00	0000		0000	O
Back up				

◆□ ▶ ◆□ ▶ ▲目 ▶ ▲目 ▶ ◆□ ▶

Introduction	IDM	$h o \gamma \gamma$ rate 0000	Results	Summary
00	0000		0000	O
DM signals				

[see e.g.: M. Gustafsson, S. Rydbeck, L. Lopez Honorez, E. Löndstrom, Phys. Rev. D 86 (2012) 075019]

<□▶ <□▶ < 三▶ < 三▶ < 三▶ = 三 のへぐ

- gamma-ray lines
- cosmic and neutrino fluxes
- direct detection signals

Introduction	IDM	$h \rightarrow \gamma \gamma$ rate	Results	Summary
00	0000	0000	0000	0

$h \rightarrow Z\gamma$ – Preliminary

[formulas: A. Djouadi, Phys.Rept. 459, 1 (2008), arXiv:hep-ph/0503173 [hep-ph]]

- コント (口) ・ (口) ・ (口) ・ (口) ・ (口)

Sac

• $R_{Z\gamma} \lesssim 1.9$

- The straight line invisible channels open
- $R_{Z\gamma}$ anticorrelated with $R_{\gamma\gamma}$.