
X. Sarazin, Photon 2013 1 

FLOWER 
 

Fluctuations of the Light velOcity WhatEver the Reason 
 

François Couchot, Xavier Sarazin, Marcel Urban 

LAL Paris-Sud, Orsay 
 

Arache Djannati-Atai 

APC, Paris-Diderot 
 



X. Sarazin, Photon 2013 2 

 The electrodynamical “constants” c, e0 and m0 are considered to be 

fundamental constants 

 There is no physical mechanism explaining their origin 

 They are assumed to be invariant in space and in time 
 

 We propose a mechanism where e0 , m0 and c originate from the properties 

of the quantum vacuum and its interaction with photons. 

 e0 , m0 and c can vary if the parameters of the vacuum vary 

 stochastic fluctuations of c are expected 

What is the physical origin  

of the electromagnetic constants c, e0 and m0 ?  

M. Urban et al.,  Eur. Phys. Journal D 67, 3 (2013) 58 



X. Sarazin, Photon 2013 3 

An effective description of the quantum vacuum 

 vacuumfrom borrowedEnergy 
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
Life time of the pair: 

Vacuum filled with continuously appearing and disappearing ephemeral fermion pairs (f,f ) 
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 The global electric charge, color and kinetic moment are null 

    But the electric and magnetic dipole moments are not null 

 All the charged fermions are considered: leptons & quarks 
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 Density of the pairs (quantum mechanic) 

222 relfWrestWf cmKEKW  Average energy of a pair 
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 Life time of the pair 

Vacuum filled with continuously appearing and disappearing ephemeral fermion pairs (f,f ) 

KW is the single free parameter in this model 

An effective description of the quantum vacuum 



X. Sarazin, Photon 2013 5 

Three distinct definitions for the speed of light in vacuum 

 Crel : maximal speed in special relativity   

propag

propag

T

L
c  C : velocity of the photon   
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me
MEc CE.M. : phase velocity of the E.M. wave  

ccc MErel  ..A priori, we have in average :  

2 
rel rest mc E  



X. Sarazin, Photon 2013 6 

m0 
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Vacuum Permeability m0  

I 

B 

B = m0 × (nI + M) 

M = magnetization of matter 

If the matter is removed :  B = m0nI  0 !!! 

The vacuum is “globally” paramagnetic 

 When an external magnetic field B is applied: 

           The magnetic moment of the pair aligns along B during its life-time f 

 We assume that the global kinetic moment of the pair is null 

            spins (fermion, antifermion) = ↑↓  ou  ↓↑ 
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 But opposite charges  the pair has a global magnetic moment = 2 × magneton Bohr:  

In our model, m0 comes from the magnetization of the f f pairs 
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 The life-time f of the pair depends on its coupling energy with B: 

B 

This pair has a larger energy 

   it will live longer 
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The difference of the life-times 

leads to a  global magnetization 

of the vacuum 

 By Averaging over   

 It lead to a density of magnetization  
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 By summing over all the fermions (3 families) 
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This pair has a lower energy 

   it will live shorter 
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The average energy of fermion pairs is ~ 32 times their mass energy (2mc2) 
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We must sum over the 3 charged leptons and the 6 quarks with 3 colors  

3+6×3 = 21 types de fermions. 
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e0 
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 Pairs are polarized during their lifetime  
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  depends on the coupling energy of the pair with the electrostatic field E 

  is larger when the pair is aligned with E   POLARISATION  

 The mechanism is similar to m0 

   e0 due to the polarization of the pairs f f  in vacuum 

Vacuum Permittivity e0 

 Electric dipole moment of the pairs f f  

                (di is the average size of the pair) 
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 If the « natural » size of a pair is the Compton wavelength  ii d
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Let’s see how a « real » photon would propagate  

through this vacuum filled by « ephemeral» fermions  
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f 

f 

 Real photon is trapped by an ephemeral pair 

 As soon as the pair disappears, the photon is relaxed with its initial energy-momentum 

Interaction of a photon with the fermion pairs in vacuum 

 Between two interactions, the vacuum is « empty » 

 there is no length scale, neither time scale 

 the photon goes instantaneously to the next interaction 

 A photon of a given helicity interact only with a fermion of opposite helicity (in 

order to flip its spin) 

 The duration of the capture ≈ the lifetime of the pair  finite transit time of the photon 

 finite velocity 
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  The average total duration for a photon to cross a length L is  
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 One obtains the general expression of the photon velocity in vacuum: 

Derivation of the photon velocity c 

fffstop NLN ,

 When a photon crosses a length L of vacuum 

The average number of stops on the f f  pairs is 

And the average duration of stops on the f f  pairs is   
2

,

f
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 f = cross-section for a photon to interact with a  f f  pair 
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We can show that: 
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We get a complete coherent model: 
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The successives interactions of the photon are independant 

Stochastic fluctuations of the speed of light 

Remarks: 

• no dispersion in frequency is expected (energy of the photon is conserved)  

• no phase fluctuation is expected (fluctuations are canceled in cE.M.)  

 The number of captures and their duration fluctuate statistically 
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 The propagation time of a photon to cross a length L of vacuum must fluctuate as 

  )m(as 50 LLt KW ≈ 32   
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 This model proposes a mechanism where e0 , m0 and c are not fundamental constants but 

originate from the properties of the quantum vacuum  

 These “constants” can vary if the parameters of the vacuum vary (density or lifetime of 

the fermions pairs) 

  This simple model must be considered as a « Toy Model » to predict new experimental 

phenomena 

Few comments 

 I will review two experimental predictions: 

 Stochastic fluctuations of the propagation time of photons in vacuum  

 tests in progress with GRBs and with XUV atto pulses in CELIA 

 Variation of m0 when vacuum is stressed by high intensity laser  
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Stochastic Fluctuations  

of the photon propagation time in vacuum 

Search for a broadening of the time width of a light pulse  

as the square root of the transit length  

  )m(as 50 LLt 

1st experimental test 
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0.05 fs.m1/2 

~ 9  ns.pc1/2 

Distance (pc) 


t (
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Available constraints 

~ Gpc 

GRBs 

(1 m ≈ 30 zpc) 
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Gamma Ray Bursts 

 ~ 20 short GRB’s have been observed by SWIFT, Konus-Wind of FERMI with a reliable 

measured redshift 

 An analysis of their light curve is in progress, in coll. with N. Bhat (Univ. Alabama in Huntsville) 

 Preliminary results (after analysing 7 GRBs): 

GRB-090510  
z = 0.9 

GRB-070429B  
z = 0.9 

t = 10 ms t = 9 ms t = 4 ms ? 

z = 0.9    dL ≈ 2.1026 m  0    750  as.m-1/2 
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0.05 fs.m1/2 

~ 9  ns.pc1/2 

Distance (pc) 


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Available constraints 

t = 10 ms 

~ Gpc 

GRBs 

t ≈ 1 ms 

~2 kpc 

mbursts 

Crab pulsar 

~ 8.105 km 

~ 25 npc  

Lunar Range 

t = 0.2 fs 

~1m 

~ 30 zpc  

atto 

XUV 

(1 m ≈ 30 zpc) 
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The atto-FLOWER experimental project 

We propose to measure the duration of attosecond XUV pulses  

after crossing few tens of meter of vacuum 

Assuming XUV pulse t = 0.2 fs 
2×25 m 

t ≈ 0.4 fs  ? 
 = 0.05 fs.m1/2 

New collaboration with CELIA (Bordeaux) 

E. Constant, E. Mevel, F. Catoire, Ph.D. O. Hort 
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 Variation of m0 or e0  

when the vacuum is stressed  

by an ultra high intensity laser pulse ? 

2nd experimental test 
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In our model, a photon is equivalent to 

a f f fermion pair with a magnetic moment = 0  

Photon arriving  

on a free f f  pair 

Photon trapped  

by the f f  pair 

The pair is “occupied” 

Photon released  

by the f f  pair  

The pair is free again 

 mf = 2 × mB  

1/2 1/2 

 mf = 0 

1/2 1/2 

 mf = 2 × mB  

1/2 1/2 

  

A polarized light pulse should modify the vacuum 

 The density of magnetization is reduced inside the pulse 

 The vacuum permeability m0 should increase ! 

Transient variation of m0 inside an high intensity laser pulse 



X. Sarazin, Photon 2013 26 

339

3
3

2

m / electrons 10.2
321






























 


CC

W
e

K
N



The density of ephemeral e/e pairs in vacuum is 
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Transient variation of m0 inside an high intensity laser pulse 

This expected effect could be tested 

Also 2nd order non linear effects (as in QED) are expected: exact calculations are needed 

(exact calculation is needed) 
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Conclusions 
 

 We propose a mechanism where e0 , m0 and c originate from the properties of the 

quantum vacuum and its interaction with photons. 

 e0 , m0  and c can vary if the parameters of the vacuum vary 
 

 Two experimental predictions :  

  Stochastic fluctuations of the photon propagation time in vacuum 

  

An experimental test in under progress in CELIA with XUV attosecond pulses 

  Transient variation of m0 or e0 inside an ultra high intensity laser pulse 
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Why KW ~ 32 ?  
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