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What is the physical origin
of the electromagnetic constants ¢, g,and g, ?

» The electrodynamical “constants” c, g, and g, are considered to be
fundamental constants
= There is no physical mechanism explaining their origin

= They are assumed to be invariant in space and in time

» We propose a mechanism where ¢g,, u,and c originate from the properties
of the quantum vacuum and its interaction with photons.
= &, Hpand c can vary if the parameters of the vacuum vary

—> stochastic fluctuations of c are expected

M. Urban et al., Eur. Phys. Journal D 67, 3 (2013) 58
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An effective description of the quantum vacuum

Vacuum filled with continuously appearing and disappearing ephemeral fermion pairs (f,f)

Life time of the pair: 7 = Ex !
2 Energy borrowed from vacuum
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An effective description of the quantum vacuum

Vacuum filled with continuously appearing and disappearing ephemeral fermion pairs (f,f)

» Average energy of a pair W; =Ky 2Eest = Ky 2mer2e|

o1 h
2We Ky 4mycy,

» Life time of the pair To =

Ac,

3
3 2
» Density of the pairs (quantum mechanic) N ~ 1 N(Z”ﬁ] ~ Ki —1
A3\ Ap

» The global electric charge, color and kinetic moment are null
But the electric and magnetic dipole moments are not null

» All the charged fermions are considered: leptons & quarks

mmp K, is the single free parameter in this model
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Three distinct definitions for the speed of light in vacuum

» C, : maximal speed in special relativity = E ot = mcr2e|

1

» Cc v : phase velocity of the EEM. wave = Cgy. =—F——
v €oHo
L
> C,: velocity of the photon = C, = propag
T propag

A priori, we have in average . Crel =CEM. = C?,
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Vacuum Permeability p,

B =pyx (nl + M)

I
M = magnetization of matter
— If the matter is removed : B = pynl =0 !
B

The vacuum is “globally” paramagnetic

In our model, p, comes from the magnetization of the ff pairs

» \We assume that the global kinetic moment of the pair is null
= spins (fermion, antifermion) = 1| ou |1
» But opposite charges = the pair has a global magnetic moment = 2 x magneton Bohr:

2eQ:h
2us =

2m;
» When an external magnetic field B is applied:

= The magnetic moment of the pair aligns along B during its life-time ;
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» The life-time t; of the pair depends on its coupling energy with B:

hil?2
Ty (‘9)
Wf +Wcoup|ing

hil?2
W: —2u:Bcosé

Wioupling = —24¢BC0osO  immp 7¢(6)=

This pair has a larger energy

T8l 7 itwill live longer The difference of the life-times

> = | |eads to a global magnetization

/‘/v/./' This pair h_as a lower energy of the vacuum
/7 it will live shorter

_ [o 2p; cos 7;(0) 2w sind db A
> By Averaging over 6 immp (M;) = - - . : B.
y Jing M) Jo Ti(0) 27 sing db SU ;

> It lead to a density of magnetization AM; = 2N;(M,;)

» By summing over all the fermions (3 families)

-

2N QF 2%

:Z?:Crzele z W,

1
/70 i
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_ 2N
Wi =Ky 2mgcp,

3 3
~ K 247c°h
VK& -1 Lo = —
N [ - }> - ) e
f

f

As = h/(mfcre,) )

We must sum over the 3 charged leptons and the 6 quarks with 3 colors =
3+6x3 = 21 types de fermions.

2 2 4 1 2
n:l'> =e“ x| 3x1+3x3x| —+—||=8e
ZQf ( (9 9D

- Ky 3%
-y 0T — 3 Cooy €2
K& -1

3
_ Kw —1)
Ho =ty =47 107" N.A?  imemp ( W 3r° n— KW ~ 32

Ky li¥o%

The average energy of fermion pairs is ~ 32 times their mass energy (2mc?)
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Vacuum Permittivity g,

» The mechanism is similar to g,
= &, due to the polarization of the pairs f f in vacuum

> Electric dipole moment of the pairs f f d; =Q,ed;
(o is the average size of the pair)

» Pairs are polarized during their lifetime t

» 1 depends on the coupling energy of the pair with the electrostatic field E

Z'-((9)= hil2
| W. —d.E cosd

> 1 is larger when the pair is aligned with E = POLARISATION

- - 5;
mp D=cgyxE with 8—622NQ2 '
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> If the « natural » size of a pair is the Compton wavelength &; =&,

()
Iy £, =

G

Qf
Kw 247z3hcre| Z

(m)g 37°

> We remind that 5 =4, = -
Ky do
- 3z e? e’
.y £, = T« 3 = = &,
Ada  37° hc, 47 a hCy,

||- EO = 50
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Let’s see how a « real » photon would propagate

through this vacuum filled by « ephemeral» fermions
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Interaction of a photon with the fermion pairs in vacuum

» Real photon is trapped by an ephemeral pair

» As soon as the pair disappears, the photon is relaxed with its initial energy-momentum

*/\/\/\)

» Between two interactions, the vacuum is « empty »
= there is no length scale, neither time scale
= the photon goes instantaneously to the next interaction

» The duration of the capture ~ the lifetime of the pair = finite transit time of the photon
= finite velocity

» A photon of a given helicity interact only with a fermion of opposite helicity (in
order to flip its spin)
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Derivation of the photon velocity c,

> o; = cross-section for a photon to interact with a ff pair

» When a photon crosses a length L of vacuum
The average number of stops on the ff pairsis Ny, ; =LxN; x oy

And the average duration of stops on the ff pairsis T, = Nitop, ¢ il
’ 2

> The average total duration for a photon to cross a length Lis T = Z N stop, x%f
f

» One obtains the general expression of the photon velocity in vacuum:

=== -
T ZO'fofxz'f/Z

X. Sarazin, Photon 2013

15



Derivation of the photon velocity c,

1 )
T¢ = >
Kw AMy Crey
L 1 ) 64 1
C},_:— =~ N; = Ky 1 >:> Cy = ax 2V 12 X Crel
T SoxNoxei2 | M50 v Y,
Kw =32 )
. o o
We canshow that:  C, =Cpq if o =4x Thomson }’j{
a

<C7> =CeM. = Crel |

/VVe get a complete coherent model:

~

r (c,) = average velocity of the photon
1

C -
oz,

\_

Cooy . _ 2
[ el - E= M Creativiste

/
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Stochastic fluctuations of the speed of light

The successives interactions of the photon are independant

= The number of captures and their duration fluctuate statistically

— The propagation time of a photon to cross a length L of vacuum must fluctuate as

o (L)= AL xix |—Zce
c \96x Ky

Ky=32 = O't(L):SOan,/L(m)

Remarks:
* no dispersion in frequency is expected (energy of the photon is conserved)
» no phase fluctuation is expected (fluctuations are canceled in c¢,,)
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Few comments

» This model proposes a mechanism where ¢,, 1,and c are not fundamental constants but
originate from the properties of the quantum vacuum

» These “constants” can vary if the parameters of the vacuum vary (density or lifetime of

the fermions pairs)

» This simple model must be considered as a « Toy Model » to predict new experimental
phenomena

> | will review two experimental predictions:
v" Stochastic fluctuations of the propagation time of photons in vacuum
= tests in progress with GRBs and with XUV atto pulses in CELIA

v" Variation of p, when vacuum is stressed by high intensity laser
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15t experimental test

Stochastic Fluctuations
of the photon propagation time in vacuum

Search for a broadening of the time width of a light pulse
as the square root of the transit length

o (L)~50asx/L(m)

X. Sarazin, Photon 2013
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Available constraints
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Gamma Ray Bursts

» ~ 20 short GRB’s have been observed by SWIFT, Konus-Wind of FERMI with a reliable
measured redshift

» An analysis of their light curve is in progress, in coll. with N. Bhat (Univ. Alabama in Huntsville)

» Preliminary results (after analysing 7 GRBS):
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Avalilable constraints
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The atto-FLOWER experimental pr

We propose to measure the duration of attosecond XUV
after crossing few tens of meter of vacuum

2x25m
0.2 fs >

o = 0.05 fs.m?/2

Assuming XUV pulse o; =

New collaboration with CELIA (Bordeaux)
E. Constant, E. Mevel, F. Catoire, Ph.D. O. Hort

le

Production of XUV
Sub femto pulses
with IR laser pulse on gas target

oject

pulses

0;~0.4fs ?

Cubic mirror

HHG

e

XUV /IR filters
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2nd experimental test

Variation of g, or &,
when the vacuum Is stressed

by an ultra high intensity laser pulse ?

X. Sarazin, Photon 2013
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Transient variation of w4, inside an high intensity laser pulse

In our model, a photon is equivalent to
a f f fermion pair with a magnetic moment = 0

Photon trapped Photon releas_ed
by the f f pair by the ff pair
The pair is free again

Photon arriving

on a free ff pair o .
The pair 1s “occupied”

ot ot
o=—1/2 o=+1/2 o=+1/2 o=+1/2 o=—1/2 o=+1/2
= = 2% g = 4=0 = W= 2% Uy

A polarized light pulse should modify the vacuum
= The density of magnetization is reduced inside the pulse

= The vacuum permeability p, should increase !
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Transient variation of w4, inside an high intensity laser pulse

N, = 10?° photons/pulse
Pulse At ~100 ps (~3cm) > = ~ 4 102°photons/m3

Waist ~ 100 um

The density of ephemeral e*/e~ pairs in vacuum is

3
K2 -1 3
N z{ W J z(gj ~ 2.10% electrons/ m®

i ﬂ’C AC

N
- Ao ~ %x 7~ llO_lo (exact calculation is needed)

Ne

This expected effect could be tested
Also 2" order non linear effects (as in QED) are expected: exact calculations are needed
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Conclusions

» We propose a mechanism where g,, u,and c originate from the properties of the
guantum vacuum and its interaction with photons.
= &,, 4y and c can vary if the parameters of the vacuum vary

» Two experimental predictions :

v" Stochastic fluctuations of the photon propagation time in vacuum

o, (L)~ 50asx,/L(m)

An experimental test in under progress in CELIA with XUV attosecond pulses

v" Transient variation of pu, or g, inside an ultra high intensity laser pulse
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Why K, ~ 32 ?

Ky ~ 32 if the energy spectrum density of the pairs ff is p(E) = iz
E

J‘PIanckE (E)dE
<E > 2mc? P ~In EPlanck % 2m CZ
f EPIanck 2m C2 f
[ " p(E)dE f

2mc

~ 51 for e*e-

: ' {K ~43fortt
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