Measurement of hard double-parton interactions with the ATLAS detector - New J.Phys. 15 (2013) 033038 *Photon 2013 - Paris*

Tim Martin

University of Warwick On behalf of the ATLAS Collaboration

May 23, 2013

Introduction to Double Parton Interactions

- For di-jets systems produced in association with a *W* boson, the jets tend to display a greater degree of collinearity.
- Assuming no correlation between the systems, di-jet systems from DPI balance each other in p_T and are independent of the primary scatter.

 $\sigma_{\rm eff}(s)$

• Effective area parameter for double-parton interactions: $\sigma_{
m eff}(s)$

$$\sigma_{ ext{eff}}(s) = rac{\sigma_W(s).\sigma_{2j}(s)}{\sigma^{(ext{tot})}_{W+2j}(s) - \sigma^{(ext{SPI})}_{W+2j}(s)}$$

- Probability of second hard scatter, given that one has occurred, is proportional to the flux of the accompanying partons.
- Being bound in the hadron, their flux is inversely proportional to the proton cross-sectional area. $\sigma_{\rm eff}$ also includes longitudinal correlations.
- The effective cross section for DPI has little to do with the measured strength of the interaction.
- ATLAS W+b-jets [arXiv:1302.2929] cross section measurement has $^{+39}_{-28}\%$ uncertainty on its DPI correction.

Analysis Strategy

- Identify $W+2 {
 m jet}$ candidate events with the $W \to e \nu_e$ and $W \to \mu \nu_\mu$ modes.
- Using the ATLAS 2010 data set, $36 {\rm pb}^{-1}$ of usable data at low pileup.
- Extract the fraction of the sample, $f_{\rm DP}^{\rm Detector}$ whose origin was from a secondary hard scatter.

$$f_{\mathrm{DP}}^{\mathrm{Detector}} = \frac{N_{W_{0j}+2j_{\mathrm{DPI}}}}{N_{W_{2j}}+N_{W_{0j}+2j_{\mathrm{DPI}}}}$$

• $N_{W_{2j}}$ is the number of events with the jets directly associated with the production of the W, $N_{W_{0j}+2j_{DPI}}$ is the number of events where the jets originate from DPI.

Event Selection

- Jets were selected with the anti-k_t algorithm
 - Radius parameter R = 0.4.
 - \circ $ho_{
 m T}>20~{
 m GeV}$
 - |y| < 2.8.
- Additional requirements were placed on the Jet Vertex Fraction of associated tracks to reduce the effect of multiple *pp* collisions. Jets within $\Delta R < 0.5$ of a selected lepton were removed.
- Isolated electron candidates were selected with:
 - \circ $p_{\mathrm{T}} > 20 \text{ GeV}$
 - $|\eta| < 2.47.$
- Prompt muon candidates were selected using both inner detector tracking and outer muon spectroscopy.
 - $\circ~p_{
 m T}>20~{
 m GeV}$
 - \circ $|\eta| < 2.4$

Event Selection

- Events with exactly one charged lepton were selected, these were further required to have:
 - Missing energy $E_{\rm T}^{\rm miss} > 25 \text{ GeV}$
 - $\,\circ\,$ Transverse mass from lepton and $E_{\rm T}^{\rm miss}$, $m_{\rm T}>$ 40 GeV.
- Data samples with above selection:
 - W + 0 jet
 - *W* + 2jet
 - di-jet. Events with exactly two jets, selected with fully unbiased and efficient trigger (Minimum Bias Trigger Scintillators and Zero Degree Calorimeter).
- W selection similar to "Study of jets produced in association with a W boson" ATLAS Collaboration, Phys. Rev. D 85, 092002 (2012)

Monte Carlo Samples

- *W* boson signal samples from Alpgen using the MLM matching scheme, interfaced with Herwig and Jimmy, using the AUET2 tune. Referred to as A+H+J
- *W* boson additionally simulated with Sherpa using CKWW merging and default underlying event tune.

Analysis Variables

- The kinematics of the W and jets in DPI events are assumed uncorrelated.
- The momentum balance of such jets should be near zero in the transverse plane and is better than the azimuthal balance $(\Delta \phi^{j1j2})$ which is more sensitive to the underlying event.
- In addition, the transverse momenta of the di-jet system normalised by the sum of individual jets is considered. This quantity is less affected by jet energy scale uncertainties.

$$\Delta_{
m jets} = |ec{
ho}_{
m T}^{J1} + ec{
ho}_{
m T}^{J2}|$$
, $\Delta_{
m jets}^n = rac{|ec{
ho}_{
m T}^{J1} + ec{
ho}_{
m T}^{J2}|}{|ec{
ho}_{
m T}^{J1} + |ec{
ho}_{
m T}^{J2}|}$

 Δ_{iets}^n is used to obtain the main result.

Backgrounds

Pythia6: $Z \rightarrow II$, Powheg: $t\bar{t}$, MC@NLO: single top plus di-boson.

- A data-driven multi-jet background contamination was taken by reversing certain shower shape requirements,
- Backgrounds amount to:
 - \circ 19% of electron channel (dominantly multi-jet and $W
 ightarrow au
 u_{ au}$)
 - 14% muon channel (dominantly multi-jet and $Z \rightarrow II$).

DPI Fraction Extraction

- Additional parton-parton scatters result in additional hadronic activity or materialise as jets.
- A threshold $p_{\rm T}^{\rm max}$ is introduced to separate 'hard' and 'soft' scatters in MC.
- A template fit is performed on the Δ_{jets}^{n} distribution to extract $f_{DP}^{Detector}$ from background-corrected data.
- Template A: "DPI Off W_{2j} Only"
 - Main sample from A+H+J. Hard MPI candidates removed by cutting events with two or more secondary partons above cut of scale $p_{\rm T}^{\rm max} = 15$ GeV.
 - $\circ\,$ Secondary sample from Sherpa with MPI switched off, no secondary pertubative scatters in range $p_{\rm T}>3.5$ GeV.

DPI Fraction Extraction

- Template B, "DPI Only"
- Sample in which both jets originate from DPI.
 Approximated using the data di-jet sample.
- Result difference using Pythia6 MC in place of data for this sample found to be well below the percent level.

The Effect of $p_{\rm T}^{\rm max}$

- Choose $p_{\rm T}^{\rm max} = 15$ GeV, the value with best agreement between the MC extraction and the parton level value from the MC.
- The MC detector level is within 10% of the parton level, and can be interpreted as a result at the parton level to within this accuracy.

12 of 20

Detector Level Fits

 Background subtracted data are fit to the two templates in linear combination. Excluding last 2 bins of Δⁿ_{iets}.

• A pileup correction is applied $(r_{\rm pile-up} = 1.17 \pm 0.15({\rm stat.}))$.

Compatible results are obtained from both Δ_{jets}^n and Δ_{jets} .

 $f_{
m DP}^{
m Detector}(\Delta_{
m jets}^{
m n}) = 0.076 \pm 0.013 ({
m stat.}), \ \chi^2/N_{
m dof} = 37/28$

Sources of Uncertainty

Source	Uncertainty
Theory	10%
Pile-up	13%
Jet Energy Scale	12%
Jet Energy Resolution	8%
Background Modelling & Lepton Response	11%
Total Systematic	24%
Total Statistical	17%

Correction to Hadron Level

- Key distributions are corrected for detector effects.
- Generator level definition matches detector level, however jet finding algorithms run over final state hadron-level particles.
- Data are corrected using a Bayesian unfolding approach.

These corrected data are available for use in MC tuning or alternative approaches for DPI extraction.

15 of 20

Determination of $\sigma_{ m eff}$

- $\sigma_{
 m eff}$ is calculated using the event yields along with $f_{
 m DP}^{
 m Detector}$
- The obtained value agrees with the result obtained when fitting the data corrected to the hadron level to within 10%.

$$\sigma_{\rm eff} = \left(\frac{N}{\mathcal{AC} \cdot \epsilon \mathcal{L}}\right)_{W+0j} \cdot \left(\frac{N}{\mathcal{AC} \cdot \epsilon \mathcal{L}}\right)_{2j} \cdot \left(\frac{\mathcal{AC} \cdot \epsilon \mathcal{L}}{f_{\rm DP}^{\rm Detector} \cdot N}\right)_{W+2j}^{\rm DPI}$$

- As $W_{0j} + 2j_{DPI}$ and W + 0j events are taken with the same trigger, \mathcal{L} and efficiency cancel.
- Assuming DPI as independent processes, correction & acceptance factors (AC) cancel.
- The di-jet sample was fully efficient $(\epsilon_{2j} = 1)$.

 $\sigma_{\rm eff}(\sqrt{s} = 7 \text{ TeV}) = 15 \pm 3(\text{stat.})^{+5}_{-3}(\text{syst.})\text{mb.}$

16 of 20

Determination of $\sigma_{\rm eff}$

- The uncertainty on $\sigma_{\rm eff}$:
 - **24%** dominant propagation from $f_{\rm DP}^{\rm Detector}$.
 - 3% luminosity uncertainty
 - **5%** uncertainty on the response to leptons & background used to evaluate exclusivity ratio, N_{W+0j}/N_{W+2j}^{DPI} .

Conclusion

- The double-parton interaction rate, $f_{\rm DP}^{\rm Detector}$ in events with a W boson and exactly two jets has been extracted in pp collisions at $\sqrt{s} = 7$ TeV.
- The data are used to extract a value for the parameter $\sigma_{\rm eff}$ which is consistent with previous measurements at lower centre-of-mass energies.
- Unfolded distributions of Δ_{jets} and Δ_{iets}^{n} are presented.

The Effect of $p_{\rm T}^{\rm max}$

- In Sherpa, the only option is to switch off secondary interactions to remove DPI ($p_T^{max} \sim 3.5$ GeV).
- In A+H+J, this can be steered through moving the $p_{\rm T}^{\rm max}$ cut.
- A+H+J with $p_{\rm T}^{\rm max} = 3.5$ GeV reproduces Sherpa result to within 10%.
- Optimal p_T^{max} cut should retain soft interactions (present in the data di-jet sample, Template B).

However jets with $p_{\rm T}$ > 20 GeV should not enter Template A.

Effects of Pile Up Interactions

- Use of only single interaction data not possible due to available statistics in the *W* sample.
- The fraction of DP was extracted from MC requiring exactly one interaction on both A+J+H pseudo-data, Template A and the data di-jet Template B.
- The ratio of the extracted fraction with and without the one-vertex requirement yields a correction factor $r_{\text{pile-up}} = 1.17 \pm 0.15 (\text{stat.})$.
- The statistical uncertainty on r_{pile-up} is propagated as a systematic uncertainty where appropriate.