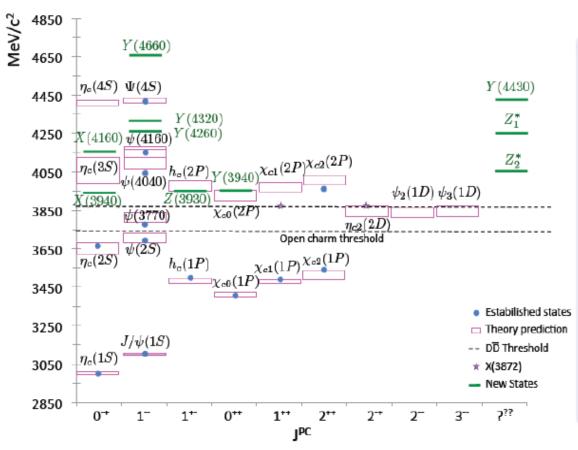
Recent results on conventional and exotic charmonium at BaBar

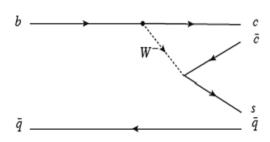
Guy Wormser


LAL Orsay

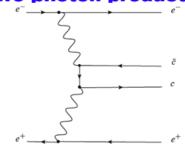
on behalf of BABAR Collaboration

Introduction

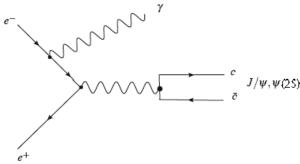
Charmonium spectrum


- Below the $D\bar{D}$ threshold, all expected states have been observed, with properties in good agreement with theory; there are no additional states.
- Many unexpected states have been reported above the $D\bar{D}$ threshold, seemingly too many with $J^{PC}=1^{--}$. Several exotic hypotheses about their nature: tetraquarks, hadronic molecules, hybrids, glueballs, hadro-quarkonia.

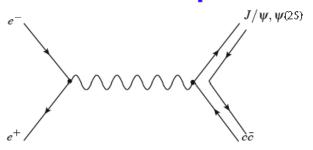
Running at ~Y(4S) energy is a very good observatory for charmonium


Experimental methods for charmonium production at the B-factories

B meson decays


States of any quantum numbers can be produced

Two-photon production


Only states with $J^{PC} = 0^{\pm +}, 2^{\pm +}, 4^{\pm +}, \dots, 3^{++}, 5^{++}, \dots$ can be produced

Initial State Radiation (ISR)

Only states with $J^{PC} = 1^{--}$ can be produced

Double charmonium production

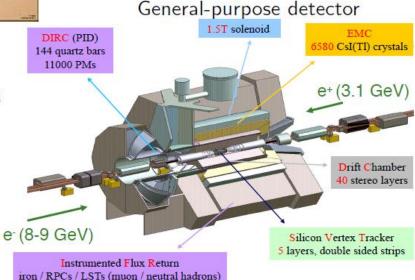
Only charmonium states with C=+1 are allowed to be produced in association with the J/ψ or the $\psi(2S)$

Short overview of the BABAR experiment

The BABAR experiment

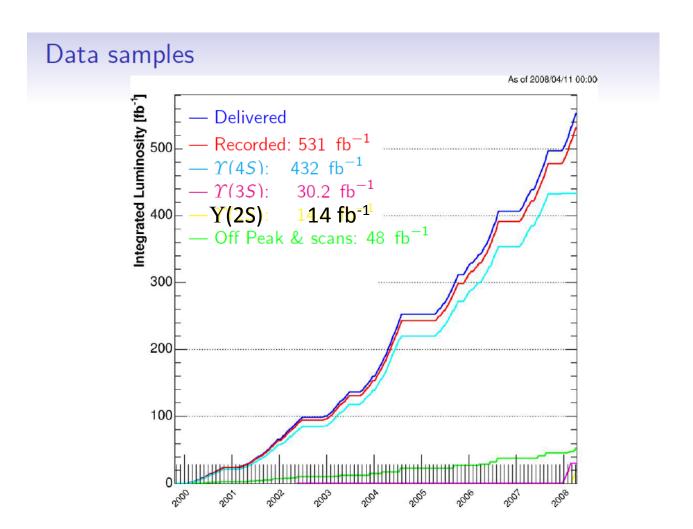
PEP-II asymmetric e^+e^- collider operating at center of mass energies near the $\Upsilon(4S)$ (for most of the time)

$$\sqrt{s} = 10.58 \,\text{GeV}/c^2$$


Asymmetric:

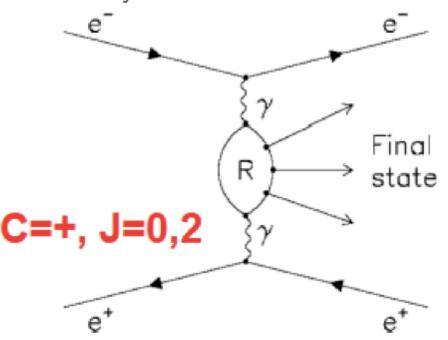
$$-0.9 < \cos \theta^* < 0.85$$

wrt electron beam


excellent performance:

- vertexing
- tracking
- PID
- calorimeter

BABAR Luminosity



4 physics topics covered in this talk

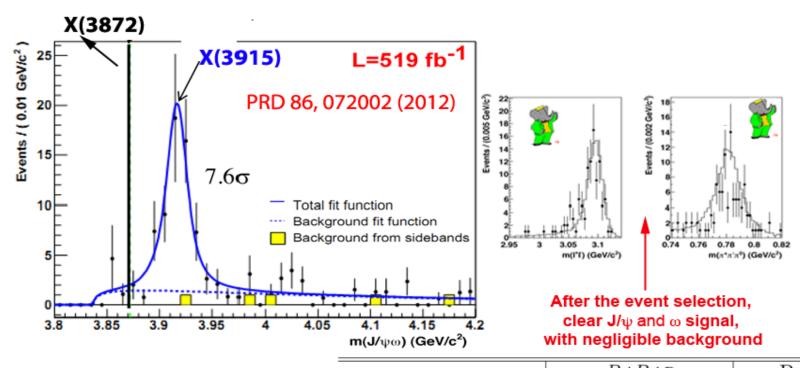
- Recent results on J/ ψ ω channel through $\gamma\gamma$ production
 - PRD86,072002 (2012)
- $\gamma \gamma$ production of $\eta_c \pi \pi$
 - PRD86,092005 (2012)
- Y(4260) and related resonances (in ISR channel)
 - PRD86,051102(R) (2012)
 - arXiv:1211.6271
- Are there new charmonium-like charged states ?
 - PRD85,052003(2012)

Electron and positron beams emit (quasi-real) photons which interact and may form resonances

- Final state e^{\pm} emitted along beam direction undetected
- allowed $J^{PC} = 0^{\pm +}, 2^{\pm +}$ (and $4^{\pm +}, 3^{++}, 5^{++}, ...$)
- low p_t with respect to beam axis

Charmonium in $\gamma\gamma \to J/\psi \omega$

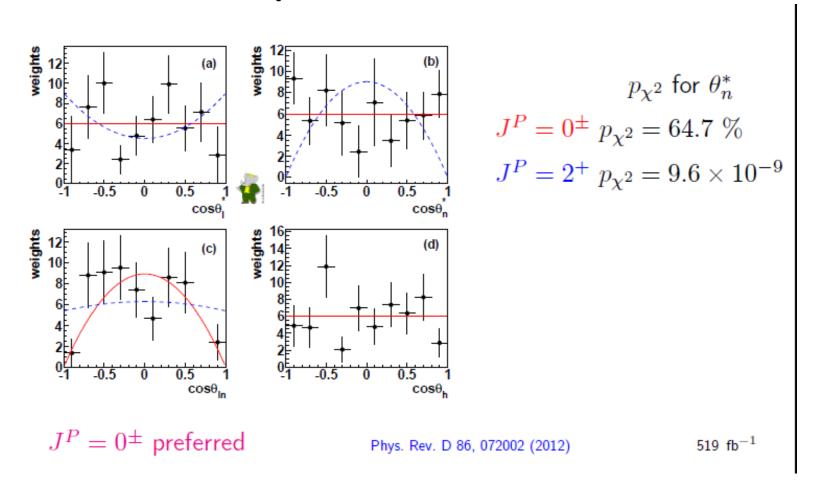
- X(3915)
 - X(3915) observed by Belle in $\gamma\gamma \to J/\psi\omega$; $\chi_{c0}(2P)$? $\chi_{c2}(2P)$?
 - Z(3930) observed by Belle, and BaBar, in $\gamma\gamma \to D\overline{D}$. $\chi_c 2(2P)$


Are X(3915) and Z(3930) the same state? measure J^{PC} of X(3915)!

- X(3872)
 - discovered in B decays, $X(3872) \rightarrow J/\psi \pi \pi$, Belle
 - seen in B decays, $J/\psi \pi \pi$, $J/\psi \omega$, $D^0 D^0 \pi^0$, $J/\psi \gamma$ (C = +)
 - $J^{PC}=1^{++}$ or $J^P=2^{-+}$, angular analysis of $J/\psi\,\pi\pi$ CDF
 - If:
- $J^P = 2^-$, X(3872) 2-photon production allowed.
- J^P = 1⁺, X(3872) 2-photon production NOT allowed.

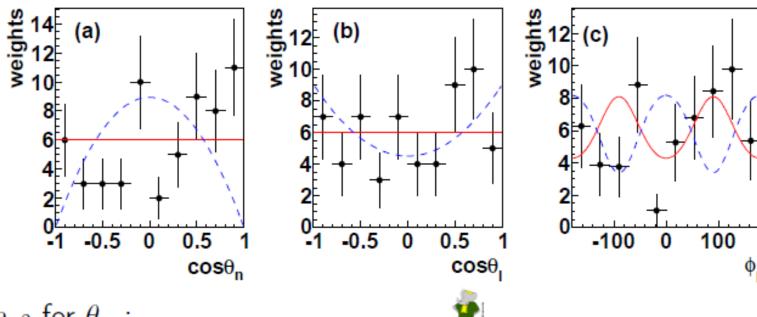
Analysis performed before LHCb's result on X3872 spin measurement

$\gamma\gamma o J/\psi \ \omega$ - Results


Results are consistent with Belle's: (PRL 104, 092001 (2010))

	BABAR	Belle
$Mass (MeV/c^2)$	$3919.4 \pm 2.2 \pm 1.6$	$3915 \pm 3 \pm 2$
Width (MeV)	$13 \pm 6 \pm 3$	$17 \pm 10 \pm 3$
$\Gamma_{\gamma\gamma} \times \mathcal{B} \text{ (J=0) (eV)}$	$52 \pm 10 \pm 3$	$61 \pm 17 \pm 8$
$\Gamma_{\gamma\gamma} \times \mathcal{B} \text{ (J=2) (eV)}$	$10.5 \pm 1.9 \pm 0.6$	$18 \pm 5 \pm 2$

New limit: $\Gamma_{\gamma\gamma}(X(3872))\times B(X(3872)\to J/\psi\ \omega)(J=2)<1.7$ eV X(3915) quantum number determination: $J^P=0^+$ favored by BABAR



X(3915) Angular analysis-Step 1 Spin 0 or 2?

Scalar or pseudoscalar ?

 p_{χ^2} for θ_n :

•
$$J^P = 0^+ p_{\chi^2} = 6.1 \%$$

•
$$J^P = 0^ p_{\chi^2} = 4.8 \times 10^{-11}$$

$$J^P = 0^+$$
 preferred; $\chi_{c0}(2P)$??

Phys. Rev. D 86, 072002 (2012)

 $519 \; {\rm fb}^{-1}$

Search for $\eta_c \pi \pi$ in $\gamma \gamma$ production

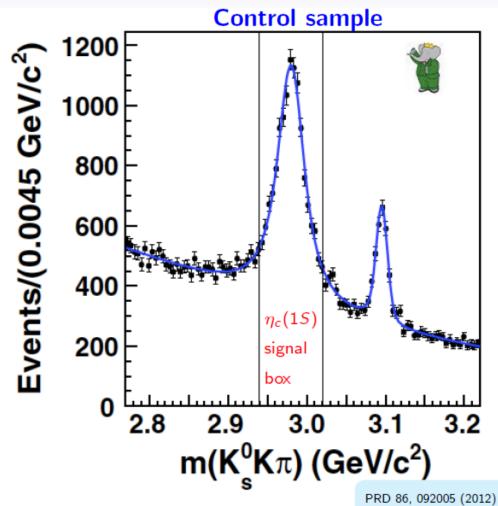
Predictions:

- $\Gamma(\eta_c(2S) \to \eta_c \pi^+ \pi^-)/\Gamma(\psi(2S) \to J/\psi \pi^+ \pi^-) = 2.9$ That is $\mathcal{B}(\eta_c(2S) \to \eta_c \pi^+ \pi^-) = (2.2^{+1.6}_{-0.6})\%$ M.B. Voloshin, Mod. Phys. Lett. A 17 (2002) 1533
- Then
 - If $X(3872) \equiv \eta_{c2} (1^1 D_2, J^{PC} = 2^{-+}),$
 - $\begin{array}{ccc} \mathcal{B}(X(3872) \to \eta_c \pi^+ \pi^-) &>& \mathcal{B}(X(3872) \to J/\psi \, \pi^+ \pi^-) &> 2.6\% [\text{PDG}] \\ \text{(isospin conserving)} & \text{(isospin violating)} \end{array}$
 - S. Olsen et al., (Int J. Mod. Phys A 20 240 (2005))

If $J^{PC}=2^{-+}$, X(3872) 2-photon production would be allowed, and $\mathcal{B}(X(3872)\to\eta_c\pi^+\pi^-)$ could be sizable.

Analysis performed before LHCb's result on X3872 spin measurement

Search for $\gamma \gamma \to \eta_c \pi^+ \pi^-$

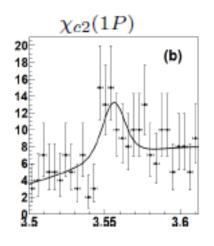

Select candidates

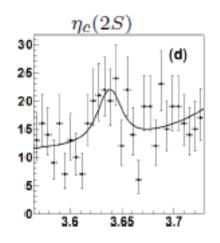
 control sample $\gamma \gamma \rightarrow \eta_c \rightarrow K_s^0 K^{\pm} \pi^{\mp}$ used to optimize the η_c selection

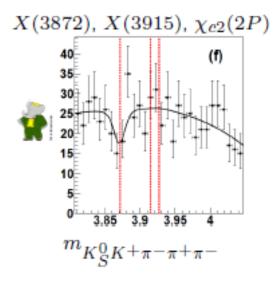
(4 tracks)

main sample of $\gamma \gamma \to X \to \eta_c \pi^+ \pi^- \to$ $(K_S^0 K^{\pm} \pi^{\mp}) \pi^+ \pi^-$ (6 tracks)

"standard" cuts on PID, p_t , missing mass,...




Search for resonances in $\gamma\gamma \to \eta_c\pi^+\pi^-$


Untagged

$$\eta_c \to K_S^0 K^+ \pi^-$$
 473.9 fb⁻¹

Phys. Rev. D 86, 092005 (2012)

 $K^0K\pi\pi$ mass spectrum with no η_c requirement

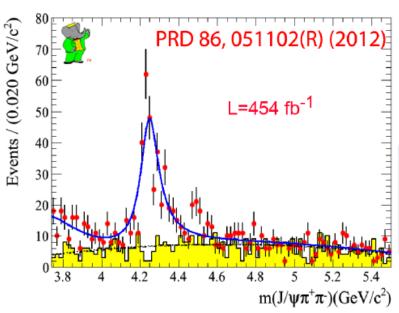
$$\frac{\mathcal{B}(\chi_{c2}(1P)\to\eta_c\pi^+\pi^-)}{\mathcal{B}(\chi_{c2}(1P)\to K_S^0K^+\pi^-)} = 14.5^{+10.9}_{-8.9} \pm 7.3 \pm 2.5 \qquad \mathcal{B}(\chi_{c2}(1P)\to\eta_c\pi^+\pi^-) < 2.2\%$$

$$\frac{\mathcal{B}(\eta_c(2S) \to \eta_c \pi^+ \pi^-)}{\mathcal{B}(\eta_c(2S) \to K_S^0 K^+ \pi^-)} = 4.9^{+3.5}_{-3.3} \pm 1.3 \pm 0.8 \qquad \mathcal{B}(\eta_c(2S) \to \eta_c \pi^+ \pi^-) < 7.4\%$$

$$\mathcal{B}(\chi_{c2}(1P) \to \eta_c \pi^+ \pi^-) < 2.2\%$$

$$\mathcal{B}(\eta_c(2S) \to \eta_c \pi^+ \pi^-) < 7.4\%$$

(compatible with prediction 2.2%)

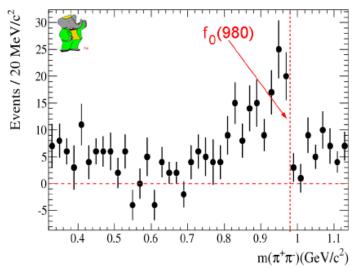

$$\Gamma_{\gamma\gamma}(X) \times \mathcal{B}(X \to \eta_c \pi^+ \pi^-)$$
 $X(3872)$ $X(3915)$ $\chi_{c2}(2P)$ $<11.1 \text{ eV}$ $<16 \text{ eV}$ $<19 \text{ eV}$

• No evidence for $\gamma\gamma$ production of X(3872), X(3915) nor $\chi_{c2}(2P)$

Resonances in the ISR channel

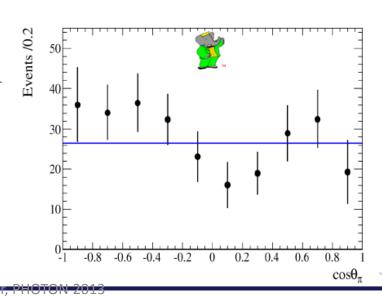
Y(4260)

• New analysis from *BABAR* : more precise measurements of Y(4260) parameters in $J/\psi\pi^+\pi^-$ ISR production PRD 86, 051102(R) (2012)

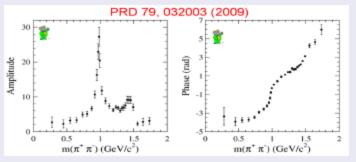

An extendend-maximum-likelihood fit is performed to the signal region $J/\psi\pi^+\pi^-$ distribution and simultaneously to the background distribution in the region 3.74-5.5 GeV/c².

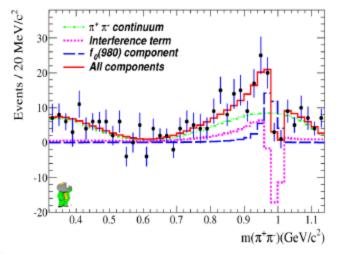
Mass (Y(4260)) =
$$4244\pm5\pm4~{\rm MeV/c^2}$$

 $\Gamma(Y(4260))=114^{+16}_{-15}\pm7~{\rm MeV}$
 $\Gamma_{e^+e^-}\times B(J/\psi\pi^+\pi^-)=9.2\pm0.8\pm0.7~{\rm eV}$


No evidence for the state at \sim 4 GeV/c² reported by Belle.

$\pi^+\pi^-$ Invariant mass distribution in the Y(4260) decay (1)


- For $4.15 \le m(J/\psi \pi^+ \pi^-) \le 4.45 \text{ GeV/c}^2$
- The distribution seems to peak around the $f_0(980)$ mass; however the peak is displaced from the indicated $f_0(980)$ position.
- The fact that the peak is displaced suggests possible interference between the $f_0(980)$ and an $m(\pi^+\pi^-)$ contribution.
- The $\pi^+\pi^-$ system has C=+1 and hence even angular momentum.
- Define θ_{π} as the angle between the π^+ direction and that of the recoil J/ψ both in the dipion rest frame.
- The distribution, which must be symmetric, is consistent with S-wave behaviour (blue line) $\chi^2/NDF = 12.3/9;$ probability=19.7%.



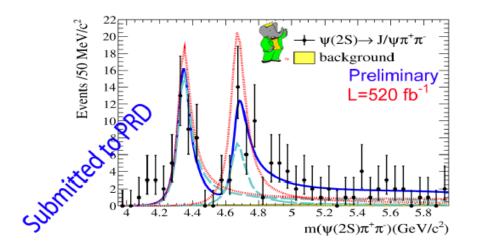
$\pi^+\pi^-$ Invariant mass distribution in the Y(4260) decay (2)

A simple model has been used to describe the $\pi^+\pi^-$ mass distribution, namely the square of an amplitude consisting of the coherent sum of a nonresonant component motivated by a QCD multipole expansion and an $f_0(980)$ amplitude; the relative strength and phase of these components are free to vary in the fit to the data.

The mass-dependence of the $f_0(980)$ amplitude and phase is from the BABAR analysis of the decay $D_s^+ \to \pi^+\pi^-\pi^+$

Using this simple model, a good description of the $\pi^+\pi^-$ mass distribution is obtained.

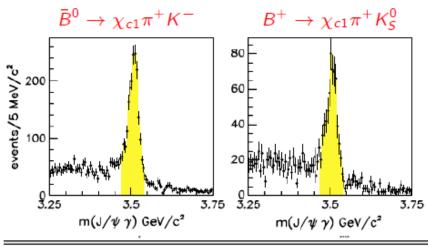
This indicates that there is an $f_0(980)$ contribution to the decay of the Y(4260) to $J/\psi\pi^+\pi^-$ but that contribution is not dominant.


$$\frac{\frac{B(Y_{4260}\to J/\psi f_0(980),f_0(980)\to\pi^+\pi^-)}{B(Y_{4260}\to J/\psi\pi^+\pi^-)}=(17\pm13)\%$$

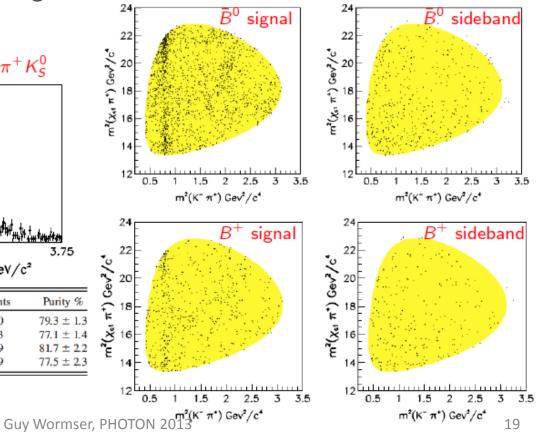
ψ (2S) $\pi\pi$ channel in ISR channel

Y(4350) - Y(4660)

• BABAR update arXiv:1211.6271 using the full dataset, including $\Upsilon(2S)$ and $\Upsilon(3S)$

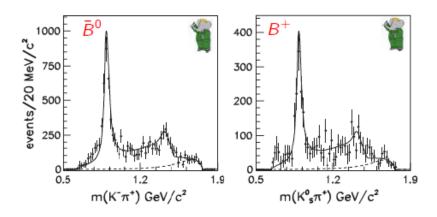


Parameters	First Solution	Second Solution	
	[constructive	[destructive	
	interference]	interference]	
$Mass Y(4360)(MeV/c^2)$	$4340 \pm 16 \pm 9$		
Width $Y(4360)(MeV)$	$94 \pm 32 \pm 13$		
\ \ //\\ /	$6.0 \pm 1.0 \pm 0.5$	$7.2 \pm 1.0 \pm 0.6$	
$Mass Y(4660)(MeV/c^2)$	4669 ±	21 ± 3	
Width Y(4660)(MeV)	$104 \pm 48 \pm 10$		
$\mathcal{B} \times \Gamma_{ee}(Y(4660))(eV)$	$2.7 \pm 1.3 \pm 0.5$	$7.5 \pm 1.7 \pm 0.7$	
$\phi(^{\circ})$	$12 \pm 27 \pm 4$	$-78 \pm 12 \pm 3$	


BABAR search for $Z_1(4050)^+$ and $Z_2(4250)^+$ in $B^0 \to \chi_{c1} \pi^+ K^-$ and $B^+ \to \chi_{c1} \pi^+ K_S$

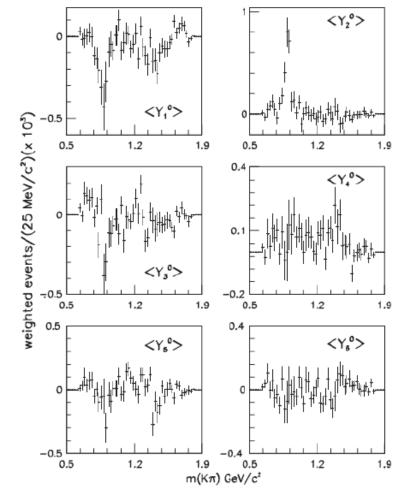
Select samples with relatively large purities

Channel	$\sigma_{\Delta E}(\text{MeV})$	$\sigma_{m_{\rm ES}}({ m MeV}/c^2)$	Events	Purity %
$\bar{B}^0 \rightarrow \chi_{c1} K^- \pi^+ (\mu^+ \mu^-)$	6.96 ± 0.34	2.60 ± 0.10	980	79.3 ± 1.3
$\bar{B}^0 \to \chi_{c1} K^- \pi^+ (e^+ e^-)$	7.81 ± 0.43	2.77 ± 0.12	883	77.1 ± 1.4
$B^+ \to \chi_{c1} K_S^0 \pi^+ (\mu^+ \mu^-)$	6.65 ± 0.55	2.65 ± 0.27	299	81.7 ± 2.2
$B^+ \to \chi_{c1} K_S^0 \pi^+ \ (e^+ e^-)$	7.52 ± 0.70	2.65 ± 0.18	329	77.5 ± 2.3


and study DP for signal region and background sidebands

PRD 85, 052003 (2012)

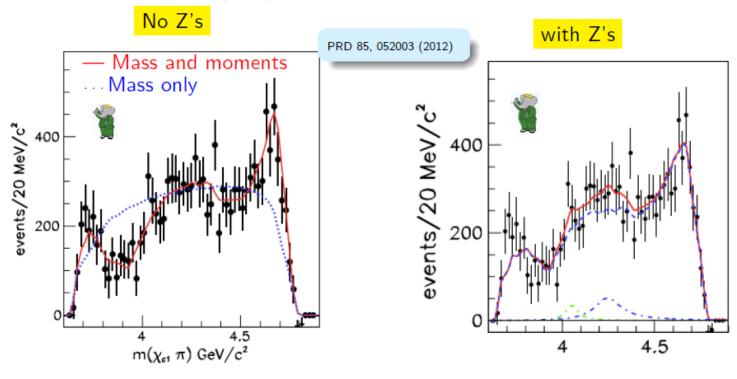
$K\pi$ description in $\bar{B}^0 \to \chi_{c1} \pi^+ K^-$ and $B^+ \to \chi_{c1} \pi^+ K^0_S$


Fit the $K\pi$ invariant mass distribution to a sum of S-P-D wave

Channel	S wave	P wave	D wave	χ ² /NDF
$\bar{B}^0 \longrightarrow \chi_{c1} K^- \pi^+$	40.4 ± 2.2	37.9 ± 1.3 10.3 ± 1.5	11.4 ± 2.0	58/54
$B^+ \to \chi_{c1} K^0_S \pi^+$	42.4 ± 3.5	37.1 ± 3.2	10.1 ± 3.1	55/54
		10.4 ± 2.5		

PRD 85, 052003 (2012)

and weight each event by Legendre Y_I^0 polynomials



No evidence from BABAR for $Z_1(4050)^+$ and $Z_2(4250)^+$

Use MC to predict reflections of $K\pi$ mass and angular structures in $\chi_{c1}\pi^+$

Reflections in MC using only $K\pi$ mass structures look different

$$\mathcal{B}(\bar{B}^0 \to Z_1^+ K^-) \times \mathcal{B}(Z_1^+ \to \chi_{c1} \pi^+) < 1.8 \times 10^{-5}$$

$$\mathcal{B}(\bar{B}^0 \to Z_2^+ K^-) \times \mathcal{B}(Z_2^+ \to \chi_{c1} \pi^+) < 4.0 \times 10^{-5}$$

$$(3 \ 10^{-5})$$

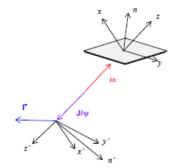
Not incompatible with Belle (4.0 10⁻⁵)

Conclusions

- Confirmation of X(3915) meson seen in J/ ψ ω
 - Spin assignment 0^{++} strongly preferred: $\chi_{c0}(2P)$?
- $\gamma\gamma$ production of $\eta_c\pi\pi$
 - No X(3872) signal seen. In line with 1⁺⁺ spin assignment
- Y(4260) and related 1⁻⁻ resonances
 - Y(4260), Y(4350) and Y(4660) confirmed
- Are there new charmonium-like charged states ?
 - Z(4050)⁺ and Z(4250)⁺ NOT confirmed
 (but not incompatible with BELLE)

Summary of the Y(4260) properties

- $J^{PC} = 1^{--}$ because it is directly produced in the e^+e^- annihilation
- $Y(4260) \rightarrow J/\psi \pi^0 \pi^0$ decay mode indicates I=0 PRL 96, 162003 (2006)
- Not observed in $Y(4260) \rightarrow \psi(2S)\pi^{+}\pi^{-}$ decays
- No observed decay to $D^*\bar{D}^*$ nor to $D_s^*\bar{D}_s^*$ so that its properties do not lend themselves to a simple charmonium interpretation
- BES III has reported the existence of a narrow resonant structure in the $J/\psi\pi$ sub-system at \sim 3.9 GeV/c² which would correspond to an isovector four-quark state arXiv:1303.5949
- Other interpretations:
 - four- quark state (PRD 72, 114016 (2005)). If the Y(4260) is a four-quark state it is expected to decay to $D_s^+ \bar{D}_s^-$ but this has not been observed (PRD 82, 052004 (2010)).
 - baryonium state (J. Phyd. G 35, 075008 (2008))
 - hybrid state (PL B 625, 212 (2005)).


Summary of the Y(4350) - Y(4660) properties

- \bullet $J^{PC}=1^{--}$ because they are directly produced in the e^+e^- annihilation
- They have been observed only in ISR $\psi(2S)\pi^+\pi^-$ production.
- Why are there states decaying into 2^3S_1 and not to 1^3S_1 ?
- One possible interpretation is hadro-charmonium states
 - M. B. Voloshin arXiv:0711.4556
 - Dubynsky & Voloshin PLB 671 (2009) 82

$J/\psi \omega$ angular analysis

- θ_ℓ^* is the angle between the direction of the positively charged lepton from J/ψ decay (ℓ^+) and the beam axis in the $J/\psi\,\omega$ rest frame.
- θ_n^* is the angle between the normal to the decay plane of the ω (\vec{n}) and the two-photon axis,
- θ_{ln} is the angle between the lepton ℓ^+ from J/ψ decay and the ω decay normal

- θ_h is the angle formed by the J/ψ momentum in the $J/\psi\,\omega$ rest frame with respect to the $J/\psi\,\omega$ direction in the laboratory frame.
- In the $J/\psi \omega$ rest frame : θ_n is the angle between the normal to the ω decay plane \vec{n} and the ω direction in the $J/\psi \omega$ rest frame.
- θ_l ; first boost the ℓ^+ to the J/ψ rest frame. θ_l is the angle between the ℓ^+ and the direction of the J/ψ in the J/ψ frame.
- ullet ϕ_l as the angle between the J/ψ and ω decay plane normals.

