The Drell-Yan measurement at COMPASS-II

Stefano Takekawa on behalf of the COMPASS Collaboration

INFN

20/05/2013 Photon 2013 - Paris

- Introduction
- TMD PDFs and Drell-Yan
- DY@COMPASS
- COMPASS spectrometer upgrades

COmmon Muon Proton Apparatus for Structure and Spectroscopy

INF

EUROPEAN ORGANIZATION FOR NEXT FAR DESEARCH					
LOUGH LAIS URBANIZATION FUR AU	CTERN SPSC 2020-014 SPSC-P-340 May 17, 2010				
COMPASS-II Proposal					
The COMPASS Collabora	lion				
1. Providence fibed Yes every 1. Transmission generation with the second sec	air groduction galar geodesics balance processes have their axis informs balance processes have the decay in more than the processes of the decay in more than the processes of the decay in the second second second second the decay is a second second second second the decay is a second second second second second second second second second second the decay is a second second second second second and decay second second second second second second the decay is a second second second second second the decay is a second second second second second second the decay is a second second second second second second the decay is a second second second second second second the decay is a second second second second second second the decay is a second second second second second second the decay is a second second second second second second second the decay is a second second second second second second second the decay is a second second second second second second second second second second second second second second second second second sec				

The scientific program of COMPASS-II started in 2012. It was approved by the CERN Research board on 1st December 2010.

The research covers three measurements:

- Primakoff \rightarrow started in 2012
- GPD and SIDIS \rightarrow Pawel's talk
- ▶ Drell-Yan \rightarrow *next year*

The structure of the nucleon at LO

The structure of the nucleon can be described by three parton distribution functions (PDF) at leading order in collinear approximation. When the k_T dependence is taken into account, eight transverse momentum dependent (TMD) parton distribution functions are used to describe it

- $f_{1T}^{\perp}(x, k_T^2)$: the Sivers effect is related to the azimuthal asymmetry in the parton intrinsic transverse momentum distribution induced by the nucleon spin
- h[⊥]₁ (x, k²_T): the Boer-Mulders function describes the correlation between the transverse spin and the transverse momentum of a quark inside the unpolarised hadron
- ► $h_{1T}^{\perp}(x, k_T^2)$: the Pretzelosity function describes the polarisation of a quark along its intrisic k_T direction making accessible the orbital angular momentum information

The Drell-Yan process

The Drell-Yan process can be used to access the TMD PDFs of the proton

The Drell-Yan process is the annihilation of a quark-antiquark pair coming from two hadrons

It is a simple process, it is well understood, but it has a very small cross-section

The single polarised Drell-Yan cross-section is (at LO):

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}^{4}q\mathrm{d}\Omega} &= \frac{\alpha_{em}^{2}}{Fq^{2}}\hat{\sigma}_{U}\Big\{\Big(1+D_{[\sin^{2}\theta]}A_{U}^{\cos 2\phi}\cos 2\phi\Big) \\ &+ |\mathbf{S}_{T}|\Big[A_{T}^{\sin\phi_{S}}\sin\phi_{S}+D_{[\sin^{2}\theta]}\Big(A_{T}^{\sin(2\phi+\phi_{S})}\sin(2\phi+\phi_{S}) \\ &+ A_{T}^{\sin(2\phi-\phi_{S})}\sin(2\phi-\phi_{S})\Big)\Big]\Big\}\end{aligned}$$

 $D_{[f(\theta)]}$ = depolarisation factors, S = spin target components, F = flux of incoming hadrons and A = the azimuthal asymmetries, $\hat{\sigma}_{II}$ = cross section surviving the integration of ϕ and ϕ_{S}

What can be measured at COMPASS

At COMPASS, it will be possible to measure the asymmetries in single polarised Drell-Yan with the process $\pi^- + p^\uparrow \rightarrow \mu^+ \mu^- + X$

Each asymmetry term in the cross section gives access to two TMD PDFs:

- ► A^{cos 2φ}_U: access to the Boer-Mulders functions of both incoming hadron and target nucleon
- $A_T^{\sin \phi s}$: access to the Sivers function of the target nucleon and unpolarised pdf of beam particle
- ► A^{sin(2φ+φs)}: access to the Boer-Mulders function of the beam hadron and to the pretzelosity function of the target nucleon
- A^{sin(2φ−φ_s)}: access to the Boer-Mulders function of the beam hadron and the transversity function of the target nucleon

SIDIS vs DY: a crucial test of TMDs factorization

SIDIS and DY are complementary way to access the TMD PDFs \rightarrow it is possible to perform a test of QCD

 \Rightarrow QCD expectation is:

 $\begin{aligned} f_{1T}^{\perp}(DY) &= -f_{1T}^{\perp}(SIDIS) \\ h_{1}^{\perp}(DY) &= -h_{1}^{\perp}(SIDIS) \end{aligned}$

This happens because gauge links are present in the cross sections of SIDIS and Drell-Yan processes to provide the gauge invariance. The gauge link provides the possibility of existence of non zero T-odd TMD PDFs. The Sivers and Boer-Mulders functions are T-odd and they change sign to provide the gauge invariance. This test includes not only the sign change but also the comparisons of the amplitude and the shape of the corresponding TMD PDFs.

Q^2 vs x phase space at COMPASS

Both the Semi Inclusive DIS and the Drell-Yan measurements allow to extract TMD PDFs

The face spaces of the two processes overlap at COMPASS \rightarrow consistent extraction of TMD PDFs in the same region!

The COMPASS spectrometer

trigger-hodoscopes μ, p, π, K beam 50-270 GeV/c momentum ± 180 mrad angular acceptance SM2 dipole Muon-filter2, MW2 HCAL RICH 1 m 11 SM1 dipole ECAL2, HCAL2 MWPC Gems Scifi **Polarised Target** won-filter1,MW1 RichWall Gems.SciÈi.DCs.straws Micromegas, DC, SciFi NH_3 target polarisation $\sim 90\%$ ► dilution factor 0.22 (Drell-Yan) three cells target

The main characteristics of the Drell-Yan experiment look like it follows:

$\blacktriangleright \ \pi^- + p^\uparrow \to \mu^+ \mu^- + X$

- the low Drell-Yan cross section requires a high intensity pion beam in order to obtain a good statistics
- \hookrightarrow beam intensity up to $10^8 \pi^-$ per second on the thick target (~ 1 interaction length)
- $\hookrightarrow\,$ a hadron absorber is needed to stop secondary particles flux and a beam plug to stop the non interacted beam
- $\,\hookrightarrow\,$ rearrangement of the target area to place the assorber
 - new muon trigger in the first stage of the spectrometer
 - vertex detector to improve the cell separation of events

$$\blacktriangleright \ \pi^- + p^\uparrow \to \mu^+ \mu^- + X$$

- the low Drell-Yan cross section requires a high intensity pion beam in order to obtain a good statistics
- \hookrightarrow beam intensity up to $10^8~\pi^-$ per second on the thick target (\sim 1 interaction length)
- $\hookrightarrow\,$ a hadron absorber is needed to stop secondary particles flux and a beam plug to stop the non interacted beam
- \hookrightarrow rearrangement of the target area to place the assorber
 - new muon trigger in the first stage of the spectrometer
 - vertex detector to improve the cell separation of events

$$\blacktriangleright \ \pi^- + p^\uparrow \rightarrow \mu^+ \mu^- + X$$

- the low Drell-Yan cross section requires a high intensity pion beam in order to obtain a good statistics
- \hookrightarrow beam intensity up to $10^8~\pi^-$ per second on the thick target (\sim 1 interaction length)
- $\hookrightarrow\,$ a hadron absorber is needed to stop secondary particles flux and a beam plug to stop the non interacted beam
- $\,\hookrightarrow\,$ rearrangement of the target area to place the assorber
 - new muon trigger in the first stage of the spectrometer
 - vertex detector to improve the cell separation of events

$$\blacktriangleright \ \pi^- + p^\uparrow \rightarrow \mu^+ \mu^- + X$$

- the low Drell-Yan cross section requires a high intensity pion beam in order to obtain a good statistics
- \hookrightarrow beam intensity up to $10^8~\pi^-$ per second on the thick target (\sim 1 interaction length)
- $\hookrightarrow\,$ a hadron absorber is needed to stop secondary particles flux and a beam plug to stop the non interacted beam
- $\,\hookrightarrow\,$ rearrangement of the target area to place the assorber
 - new muon trigger in the first stage of the spectrometer
 - vertex detector to improve the cell separation of events

$$\blacktriangleright \ \pi^- + p^\uparrow \rightarrow \mu^+ \mu^- + X$$

- the low Drell-Yan cross section requires a high intensity pion beam in order to obtain a good statistics
- \hookrightarrow beam intensity up to $10^8~\pi^-$ per second on the thick target (\sim 1 interaction length)
- $\hookrightarrow\,$ a hadron absorber is needed to stop secondary particles flux and a beam plug to stop the non interacted beam
- $\,\hookrightarrow\,$ rearrangement of the target area to place the assorber
 - new muon trigger in the first stage of the spectrometer
 - vertex detector to improve the cell separation of events

$$\blacktriangleright \ \pi^- + p^\uparrow \rightarrow \mu^+ \mu^- + X$$

- the low Drell-Yan cross section requires a high intensity pion beam in order to obtain a good statistics
- \hookrightarrow beam intensity up to $10^8~\pi^-$ per second on the thick target (\sim 1 interaction length)
- $\hookrightarrow\,$ a hadron absorber is needed to stop secondary particles flux and a beam plug to stop the non interacted beam
- $\,\hookrightarrow\,$ rearrangement of the target area to place the assorber
 - new muon trigger in the first stage of the spectrometer
 - vertex detector to improve the cell separation of events

Design of the spectrometer

The first stage of the spectrometer has key importance because the main fraction of muons from Drell-Yan process is in its acceptance

View of the COMPASS Large Angle Spectrometer from CAD design

Target area

The target will be made of two 55 cm long cells spaced by 20 cm

The target platform is modified and moved upstream along the beam line, so the target center will be moved of 230 cm

Target area: beam comes from right bottom

Hadron absorber

Structure of the hadron absorber:

- ► 120 cm tungsten beam plug
- aluminium conical part
- 200 cm alumina (Al₂O₃)
- non magnetic stainless steel peripheral part

Hadron absorber: shielding

15 minutes from the end of the run

The absorber sorrounded by the concrete shield

Also radioprotection rules were considered and they will be respected

Vertex detector

Distributions of primary vertexes along beam axis

Vertex detector specs:

- SciFi detector
- U-X-Y planes
- \blacktriangleright \sim 1 mm pitch
- $\blacktriangleright ~\sim 20 ~\times ~15 ~\rm cm^2$

A vertex detector has been proposed to:

- improve mass resolution of the virtual photon
- improve resolution on the primary vertex position
 - \rightarrow better cell separation

Acceptance to Drell-Yan events

Drell-Yan beam tests were taken in 2007, 2008 and 2009. The results were in agreement with the simulations The COMPASS acceptance covers the valence quark region (x > 0.1)

 x_p vs x_π scatter plot: in black all generated events, in blue events in acceptance

Asymmetries are expected to be significant in valence quark region, up to 10%

Statistical errors and predictions

Predictions exist for the single spin asymmetry due to the Sivers effect, for the virtual photon mass range 4-9 GeV/ c^2 and for the COMPASS kinematics. They are compared with the expected errors (1-2%) coming from a two bins analysis of two years of data taking. There is not TMD evolution in the predictions.

Α_{υτ}

- Efremov et al, PLB612 (2005) 233 (solid and dashed)
- Collins et al, PRD73 (2006) 014021 (dot-dashed)
- Anselmino et al, PRD79 (2009) 054010 (red solid, red dot-dashed)
- Bianconi et al, PRD73 (2006) 114002 (boxes)
- Bacchetta et al, PRD78 (2008) 074010 (green short-dashed)

Predictions for asymmetries: 4-9 GeV/c² @ COMPASS

There is much interest in measuring TMD PDFs with the Drell-Yan process

Facility	Туре		s (GeV²)	Timeline
COMPASS	fixed target	$\pi^{\pm}p^{\Uparrow}$	357	2014
RHIC (STAR, PHENIX)	collider	p [↑] p	200 ²	> 2016
Fermilab (SeaQuest)	fixed target	$p^{\uparrow\Rightarrow}H, pH^{\uparrow\Rightarrow}$	234	> 2015
J-PARC	fixed target	$pp^{\Uparrow}, \pi p^{\Uparrow}$	60 - 100	> 2018
Fair (PAX)	collider	$\overline{p}^{\uparrow}p^{\uparrow}$	200	> 2018
NICA	collider	$p^{\Uparrow}p^{\Uparrow},~d^{\Uparrow}d^{\Uparrow}$	144, 676	> 2018

COMPASS has the chance to be the first experiment to collect single polarised Drell-Yan data

- the Drell-Yan measurement is part of the COMPASS-II Proposal
- the CERN Research board approved the COMPASS-II Proposal on 1st December 2010
- COMPASS will have first data on single polarised Drell-Yan in 2014
- COMPASS has the possibility to access TMD PDFs with SIDIS and Drell-Yan processes
- a crucial test of TMD PDFs factorization can be done by measuring the change of sign of the Boer-Mulders and the Sivers functions

Thanks for your attention!

Backup

Definition of angles

The Collins-Soper frame: virtual photon rest frame, P_a and P_b lie in the *x*-*z* plane, *z* axis in the direction of $(P_a - P_b)$. The CS frame is usually choosen to study the Drell-Yan angular distribution

 θ and ϕ are the angles defined by the lepton pair w. r. t. the hadrons plane

 ϕ_S is the azimuthal angle of the target spin vector in the target rest frame (if target is polarised)

J/ψ -DY duality¹

Since the J/ψ is a vector particle like the photon and the helicity structure of $\bar{q}q(J/\psi)$ and $(\bar{q}q)\gamma^*$ couplings is the same, it is possible to establish an analogy between the two processes:

$$\begin{array}{c} H_{a}H_{b} \rightarrow J/\psi X \rightarrow l^{+}l^{-}X \\ \\ \\ H_{a}H_{b} \rightarrow \gamma^{*}X \rightarrow l^{+}l^{-}X \end{array}$$

Studying the J/ ψ production will be possible:

- check the duality hypothesis
- \blacktriangleright dramatically enlarge statistics (for region of mass around J/ ψ mass)

 $^1N.$ Anselmino, V. Barone, A. Drago and N. Nikolaev, Phys. Lett. B 594, (2004) 97 A. Sissakian, O. Shevchenko and O. Ivanov, JETP Lett. 86 (2007) 751

Drell-Yan tests

In 2007, 2008 and 2009 important tests was performed at COMPASS. The most recent one was done in the condition of the future measurement, with the hadron absorber. During the short data taking, the feasibility was proved, the J/ ψ peak and Drell-Yan events were observed as expected and the two cells were distinguished.

100

$$F_U^1 \stackrel{\rm LO}{=} \mathcal{C}\left[f_a \overline{f}_a\right]$$

$$\begin{aligned} A_{U}^{\cos 2\phi} &\stackrel{\text{LO}}{=} & \mathcal{C}\left[\left(2\left(\mathbf{h}\cdot\mathbf{k}_{aT}\right)\left(\mathbf{h}\cdot\mathbf{k}_{bT}\right)-\mathbf{k}_{aT}\cdot\mathbf{k}_{bT}\right)h_{1}^{\perp}\bar{h}_{1}^{\perp}\right]/M_{a}M_{b}F_{U}^{1} \\ A_{T}^{\sin\phi_{s}} &\stackrel{\text{LO}}{=} &\tilde{A}_{T}^{\sin\phi_{s}} \\ &\stackrel{\text{LO}}{=} & \mathcal{C}\left[\mathbf{h}\cdot\mathbf{k}_{bT}f_{1}\bar{f}_{1T}^{\perp}\right]/M_{b}F_{U}^{1} \\ A_{T}^{\sin(2\phi+\phi_{s})} &\stackrel{\text{LO}}{=} & -\mathcal{C}\left[\left(2\left(\mathbf{h}\cdot\mathbf{k}_{bT}\right)\left[2\left(\mathbf{h}\cdot\mathbf{k}_{aT}\right)\left(\mathbf{h}\cdot\mathbf{k}_{bT}\right)-\mathbf{k}_{aT}\cdot\mathbf{k}_{bT}\right]\right. \\ & \left.-\mathbf{k}_{bT}^{2}\left(\mathbf{h}\cdot\mathbf{k}_{aT}\right)\right)h_{1}^{\perp}\bar{h}_{1T}^{\perp}\right]/4M_{a}M_{b}^{2}F_{U}^{1} \\ & A_{T}^{\sin(2\phi-\phi_{s})} &\stackrel{\text{LO}}{=} & -\mathcal{C}\left[\mathbf{h}\cdot\mathbf{k}_{aT}h_{1}^{\perp}\bar{h}_{1}\right]/2M_{a}F_{U}^{1} \\ & \text{where } \mathbf{h} = \mathbf{q}_{T}/q_{T} \end{aligned}$$

INF

More on acceptances

Predictions for asymmetries: 2-2.5 GeV/c² @ COMPASS

Predictions for asymmetries: 2.9-3.2 GeV/c² @ COMPASS

Q^2 vs x mean values

Stefano Takekawa

Drell-Yan angular distributions

The unpolarised Drell-Yan angular distribution is:

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi}\frac{1}{\lambda+3}\left(1+\lambda\cos^2\theta + \mu\sin^2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi\right)$$

 $\lambda,\,\mu$ and ν as a function of virtual photon transverse momentum

The parameters λ , μ and ν are related by the Lam-Tung sum rule¹: $1 - \lambda = 2\nu$ At LO, in collinear approximation: $\lambda = 1$ and $\mu = \nu = 0$ but NA10 and E615 showed non-zero values for λ , μ , ν and also a cos 2ϕ modulation

¹C. S. Lam and W. K. Tung, Phys. Rev. D 21, 2712 (1980)

