

Determination of the fine structure constant using atom interferometry

- Ph.D Students R. Battesti (2003) P. Cladé (2005) M. Cadoret (2008) **R. Bouchendira**
- Postdoc E. de Mirandes (2006-2007)

- C. Schwob
- L. Julien
- P. Cladé
- S. Guellati-Khélifa
- F. Nez
- F. Biraben

Overview

- Fundamental tests using high precision measurements
 - Metrology
 - Simple and calculable system
 - Precision at the level of 10^{-9} and below
- Atomic physics.

LKB

- Laser cooling and trapping
- Atom interferometry

Quantum electrodynamics by an atomic physicist

- 1916 : A. Sommerfeld tried to include special relativity in the Bohr model in order to explain the fine structure observed in hydrogen atoms.
 - $\begin{array}{l} \alpha = \frac{v_e}{c} = \frac{e^2}{4\pi\epsilon_0\hbar c} \\ \alpha \simeq 1/137 \end{array} \overset{\bullet}{=} \frac{e}{h/2\pi} : \text{ reduced Planck constant} \\ \bullet c : \text{ speed of ligh in vacuum} \\ \bullet c_0 : \text{ permittivity of free space} \end{array}$
- 1928 : Dirac equation. Full explanation of the spin of the electron
 Hydrogen fine structure

_∧_LKB

Quantum electrodynamics by an atomic physicist

- 1916 : A. Sommerfeld tried to include special relativity in the Bohr model in order to explain the fine structure observed in hydrogen atoms.
 - $\begin{array}{l} \alpha = \frac{v_e}{c} = \frac{e^2}{4\pi\epsilon_0\hbar c} \\ \alpha \simeq 1/137 \end{array} \qquad \begin{array}{l} \bullet \ e : \ \text{elementary charge} \\ \bullet \ \hbar = h/2\pi : \ \text{reduced Planck constant} \\ \bullet \ c : \ \text{speed of ligh in vacuum} \\ \bullet \ \epsilon_0 : \ \text{permittivity of free space} \end{array}$
- 1928 : Dirac equation. Full explanation of the spin of the electron
 - Hydrogen fine structure

_∧_LKB

Magnetic moment of the electron Electron in a magnetic field :

• Cyclotron frequency :
$$\omega_{cyc} = \frac{eB}{m}$$

• Larmor frequency: $\omega_{lar} = \gamma B$

Landé g-factor : $g_{\rm e} = \frac{\omega_{\rm lar}}{\omega_{\rm over}}$

Dirac equation predicts that : $g_{\rm e}=2$

Quantum electrodynamics by an atomic physicist

- 1916 : A. Sommerfeld tried to include special relativity in the Bohr model in order to explain the fine structure observed in hydrogen atoms.
 - $\alpha = \frac{v_e}{c} = \frac{e^2}{4\pi\epsilon_0\hbar c}$ e : elementary charge $\hbar = h/2\pi : \text{reduced Planck constant}$ $\alpha \simeq 1/137$ $\epsilon_0 : \text{permittivity of free space}$

■ 1928 : Dirac equation. Full explanation of the spin of the electron

- Hydrogen fine structure
- Magnetic moment of the electron
- 1947-1948

_∧_LKB

- Lamb shift
- Anomalous magnetic moment of the electron

Formulation of the QED

The hydrogen atom

Lamb shift (1947)

Quantum electrodynamics: vacuum fluctuations

_**∧**LKB

- Optical frequency measurement in hydrogen
 - Max-Planck-Institut (Garching)
 - Laboratoire Kastler Brossel (Paris)
- The contribution of QED to the Lamb shift is limited by the knowledge of the proton charge radius.
- Independant measurement of the proton charge radius:
 - determination with e-p scattering
 - recent determination using muonic hydrogen (R. Pohl, A. Antognini, E. Nez et al. Nature 466, 212 (2010).
 - F. Nez et al., Nature 466, 213 (2010))

Landé g-factor : $g_{
m e} = rac{\omega_{
m lar}}{\omega_{
m cyc}}$

____LKB

Dirac equation predicts that : $g_{\rm e}=2$

In 1948, Kusch and Foley performed a measurement of $g_{\rm e}$. The value they obtain is not compatible with Dirac equation.

Prediction of QED (Schwinger 1948):	Renormalization	
$\frac{g}{2} = 1 + \left(\frac{\alpha}{2\pi}\right) + \dots (1)$	α is the coupling constant of QED $\alpha \simeq 1/137$	

General formula:

$$\frac{g_{\rm e}}{2} = 1 + C_1 \left(\frac{\alpha}{\pi}\right) + C_2 \left(\frac{\alpha}{\pi}\right)^2 + C_3 \left(\frac{\alpha}{\pi}\right)^3 + C_4 \left(\frac{\alpha}{\pi}\right)^4 + \dots$$
(2)

Landé g-factor : $g_{\mathrm{e}} = rac{\omega_{\mathrm{lar}}}{\omega_{\mathrm{cyc}}}$

____LKB

Dirac equation predicts that : $g_{\rm e}=2$

In 1948, Kusch and Foley performed a measurement of $g_{\rm e}$. The value they obtain is not compatible with Dirac equation.

Prediction of QED
(Schwinger, 1948):RenormalizationKinoshita et al.A life dedicated to the calculation of
$$g_e$$
2003 : The C_4 term that requires 819 Feynman diagrams2012 : Calculation of the C_5 term : 12672 diagrams

$$\frac{g_{\rm e}}{2} = 1 + C_1 \left(\frac{\alpha}{\pi}\right) + C_2 \left(\frac{\alpha}{\pi}\right)^2 + C_3 \left(\frac{\alpha}{\pi}\right)^3 + C_4 \left(\frac{\alpha}{\pi}\right)^4 + \dots$$
(2)

 M_{LKB} Anomalous magnetic moment of the electron Landé g-factor : $g_e = \frac{\omega_{lar}}{\omega_{eyc}}$

Contributions to g_e

Anomalous magnetic moment of the electron ____LKB_ Landé g-factor : $g_{\mathrm{e}} = rac{\omega_{\mathrm{lar}}}{\omega_{\mathrm{cyc}}}$ Contributions to g_e 100 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10^{-9} 10^{-10}

$$\frac{g_{\rm e}}{2} = 1 + C_1 \left(\frac{\alpha}{\pi}\right) + C_2 \left(\frac{\alpha}{\pi}\right)^2 + C_3 \left(\frac{\alpha}{\pi}\right)^3 + C_4 \left(\frac{\alpha}{\pi}\right)^4 + \dots$$
(2)

 $(\frac{\alpha}{\pi}) (\frac{\alpha}{\pi})^2 (\frac{\alpha}{\pi})^3 (\frac{\alpha}{\pi})^4 (\frac{\alpha}{\pi})^5 (\frac{m_e}{m_a}) (\frac{m_e}{m_\tau})$ weak hadron

10⁻¹¹ 10⁻¹²

Experiment of Dehmelt and Gabrielse

1984 and 2008

Electron in a Penning trap. Measurement of the :

_∧_LKB

Larmor frequency

Cyclotron frequency

 $g/2 = 1.001\,159\,652\,180\,73(28) \ [0.28 imes 10^{-12}]$

One Electron Quantum Cyclotron

Experiment of Dehmelt and Gabrielse

1984 and 2008

Electron in a Penning trap.

_∧_LKB

Measurement of the :

- Larmor frequency
- Cyclotron frequency

 $g/2 = 1.001\,159\,652\,180\,73(28) \\ [0.28\times10^{-12}]$

One Electron Quantum Cyclotron

History of the determinations of $\boldsymbol{\alpha}$

LKB

Hall effect (1879) E field (Coulomb force)

B field (Lorentz force)

Quantum Hall Effect : Quantification of the density of moving electron in a semi-conductor layer at low temperature in a high magnetic field:

$$n_{\rm e} = \nu \frac{eB}{h}, \ \nu = 1, 2, 3, \dots$$
 (3)

Quantum Hall Effect : Quantification of the density of moving electron in a semi-conductor layer at low temperature in a high magnetic field:

$$n_{\rm e} = \nu \frac{eB}{h}, \ \nu = 1, 2, 3, ...$$
 (3)

$$R_K = \frac{h}{e^2}$$

Quantum Hall Effect : Quantification of the density of moving electron in a semi-conductor layer at low temperature in a high magnetic field:

$$n_{\rm e} = \nu \frac{eB}{h}, \ \nu = 1, 2, 3, ...$$
 (3)

$$R_{K} = \frac{h}{e^{2}} \rightarrow R_{K} = \frac{Z_{0}}{2\alpha}$$

$$\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c}$$
$$Z_0 = \frac{1}{\epsilon_0 c} = 377 \ \Omega$$

New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, K. Klitzing *et al.*, *Phys. Rev. Lett.* **45** (1980)

Universality of the Quantum Hall effect :

```
GaAs heterostructure (< 1 ppb),
Si-MOSFET (< 1 ppb),
Epitaxial graphene (3 ppb).
```

Measurement in SI :

____LKB

Quantum Hall Device (500 μ m)

Calculable capacitor Lampard (50 cm)

$R_{K} = 25\,812.808\,16(47)~\Omega~[1.8\times10^{-8}]$

$$hR_{\infty}c = \frac{1}{2}m_{\rm e}c^2\alpha^2$$

 R_{∞} known at the level of 10^{-12} . Conversion between an energy expressed in terms of frequency and mass.

Measuring the ratio $h/m_{
m e}$:

- Mass ratio are well known
- Neutron
- Alkali atoms

$$m_{
m e}/m_{
m p}$$
 : $4.2 imes 10^{-10} \ m_{
m Rb}/m_{
m p}$: $1.4 imes 10^{-10}$

$$lpha^2 = rac{2}{c} R_\infty rac{m_{
m p}}{m_{
m e}} rac{m_{
m Rb}}{m_{
m p}} rac{h}{m_{
m Rb}}$$

The recoil velocity

Absorption of a photon by a atom

Rubidium atoms

•
$$v_r = 6 \text{ mm/s}$$

• $E_r = 3 \text{ kHz} (10^{-11} \text{ eV})$

____LKB

Principle

- Transfer to atoms as many recoils as possible Bloch oscillations
- Measure the change of velocity Doppler shift, atom interferometry

Uncertainty :

$$\sigma_{v_r} = \frac{\sigma_v}{N} \tag{4}$$

Atom interferometry

Atom interferometers are similar to optical interferometers

- Beamsplitter (split and recombine a wave)
- Measure the phase difference between the two paths

Light splits the atomic wave packet in two paths

An atom interferometer measures the **kinetic energy**

Sensitivity in velocity

____LKB.

Heisenberg principle : $\Delta v \simeq \frac{h}{m\Delta x}$ Example : $\Delta x = 1 \text{ mm} \Rightarrow \Delta v = 5 \mu \text{m/s}$ for rubidium atoms.

Spontaneous emission

Two photon transition to supress spontaneous emission.

_∧/_LKB.

Coherent acceleration of atoms

Succession of stimulated Raman transitions (same hyperfine level)

____LKB.

Bloch oscillations

$$\delta = \nu_1 - \nu_2 \propto t$$

Adiabatic passage : acceleration of the atoms

The atoms are placed in an accelerated standing wave : in its frame, they are submitted to an inertial force \rightarrow Bloch oscillations in a periodic

 \rightarrow Bloch oscillations in a periodic potential

Ben Dahan, et al., PRL 76, (1996) (group of C. Salomon, LKB, Paris)

P. Cladé

Temporal sequence

_∧_LKB.

Temporal sequence

____LKB

Experimental setup

Experimental setup

____LKB_

Experimental room

Temporal sequence

_∧_LKB

ALKB

Results

170 measurements (14 hours)

Each measurement : $6 \times 10^{-9} (h/m)$ and $3 \times 10^{-9} (\alpha)$ Relative uncertainty on h/m : 4.4×10^{-10} and 2.2×10^{-10} on α .

Error Budget

Source	Correction	Uncertainty 10 ⁻¹⁰
Laser frequencies		1.3
Beams alignment	-3.3	3.3
Wavefront curvature and Gouy phase	-25.1	3.0
2nd order Zeeman effect	4.0	3.0
Gravity gradient	-2.0	0.2
Light shift (one photon transition)		0.1
Light shift (two photon transition)		0.01
Light shift (Bloch oscillations)		0.5
Index of refraction atomic cloud		
and atom interactions		2.0
Global systematic effects	-26.4	5.9
Statistical uncertainty		2.0
Rydberg constant and mass ratio		2.2
Total uncertainty		6.6

____LKB_

Error Budget

Source	Correction	Uncertainty 10 ⁻¹⁰			
Laser frequencies		1.3			
Beams alignment	-3.3	3.3			
Wavefront curvature and Gouy phase	-25.1	3.0			
Wavefront curvature and Gouy phase shift					
What is the momentum of a photon ? $p = \hbar \frac{\partial \phi}{\partial z}$ where ϕ is the phase of the laser beam. $p = \hbar k$ holds only for perfect plane-wave. For a Gaussian beam :					

$$\frac{\partial\phi}{\partial z} = \frac{1}{2k} \left(\frac{4}{w^2} - \frac{4r^2}{w^4} + \frac{r^2k^2}{R^2} \right) \tag{5}$$

where w is the waist of the beam, R the wavefromnt curvature and r the distance from the propagation axes of the beam.

____LKB

Error Budget

Source	Correction	Uncertainty 10 ⁻¹⁰
Laser frequencies		1.3
Beams alignment	-3.3	3.3
Wavefront curvature and Gouy phase	-25.1	3.0
2nd order Zeeman effect	4.0	3.0
Gravity gradient	-2.0	0.2
Light shift (one photon transition)		0.1
Light shift (two photon transition)		0.01
Light shift (Bloch oscillations)		0.5
Index of refraction atomic cloud		
and atom interactions		2.0
Global systematic effects	-26.4	5.9
Statistical uncertainty		2.0
Rydberg constant and mass ratio		2.2
Total uncertainty		6.6

____LKB_

First verification of the muonic and hadronic contributions to $a_{\rm e}$

Determination of the fine structure constant

Conclusion

- We have measured the fine structure constant with an unertainty of 6.6×10^{-10} .
- \blacksquare Most precise input value of α used to test the QED
- Most stringent test of QED
- Set a limitation on exotic theory

Perspectives

- Improve the uncertainty to few parts in 10^{-10}
- Redefinition of the SI

Perspective : 10^{-10}

$$\alpha^2 = \frac{2}{c} R_{\infty} \frac{m_{\rm p}}{m_{\rm e}} \frac{m}{m_{\rm p}} \frac{h}{m_{\rm Rb}}$$

- Calculation of a_e below 10^{-10}
- Measurement of a_e : 2.6×10^{-10} . Group of G. Gabrielse
- Measurement of ^m_p/_{m_e}: 4 × 10⁻¹⁰: hydrogen like atoms. Other methods using spectroscopy of HD⁺ and antiprotonic helium.

• Measurement of
$$\frac{m}{m_{\rm p}}$$
. Below 10^{-10}

• Measurement of h/m: Group of Paris (1.3×10^{-9}) and Berkeley $(4 \times 10^{-9} \text{ in } 2013)$.

LKB

Increasing the sensitivity

Building a new generation of beamsplitters that will increase the distance between the arms of the interferometer

Improving the accuracy

Experimental and theoretical study of systematic effects at the level of $10^{-10}\,$

New experimental setup

____LKB.

- Ultracold atomic source (BEC)
- Large Momentum Beamsplitter using Bloch oscillations

Atom interferometer in large instruments

STE-QUEST (ESA) : equivalence principle

■ AGIS-LEO : gravitational wave detection

____LKB

- mass : the kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.
- electric current : The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per metre of length.
- amount of substance : The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12; its symbol is "mol.".

Two problems :

- The kilogram is defined with an artefact.
- Electrical units are independant from the SI : V_{90} and Ω_{90} derived from conventional value of K_J and R_K .

Proposal for a new redefinitioon of the base units :

- *h* has a fixed value \rightarrow kilogram (watt balance)
- e has a fixed value \rightarrow ampere
- N_A has a fixed value \rightarrow mole (silicium sphere)

The measurement of h/M and the fine structure constants plays important roles. **Before** the redefinition:

- Test of the validity of the Josephson effect and the quantum Hall effect used for the pratical realisation of the base units
- Link between the Planck constant, the Avogadro constant and the molar mass:

$$rac{h}{m_{
m ^{87}Rb}} imes rac{m_{
m ^{87}Rb}}{m_{
m ^{12}C}} = rac{hN_A}{M\,(
m ^{12}C)}$$

Proposal for a new redefinitioon of the base units :

- *h* has a fixed value \rightarrow kilogram (watt balance)
- e has a fixed value \rightarrow ampere
- N_A has a fixed value \rightarrow mole (silicium sphere)

The measurement of h/M and the fine structure constants plays important roles. After the redefinition:

- Measurement of h/m will be a realisation of the atomic unit of mass in SI
- Some fundamental constant will be directely linked to α .

$$\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \tag{6}$$

For example μ_0 will no longer be $4\pi \times 10^{-7}$.

The team

