Deeply virtual Compton Scattering cross section measured with CLAS

Baptiste GUEGAN

PHOTON 2013, Paris, 22/05/13

Deeply Virtual Compton Scattering

<u>Generalized Parton Distributions (GPD):</u>

 \rightarrow correlation between x and t

Deeply Virtual Compton Scattering

<u>Generalized Parton Distributions (GPD):</u>

 \rightarrow correlation between x and t

Accessible via Deeply Virtual Compton Scattering:

 $\left. \begin{array}{cc} \chi^{(q')} & \chi^{(x+\xi)} \\ \chi^{(x-\xi)} \end{array} \right|$ longitudinal momentum fractions of quark l(k) $\gamma^*(q)$ x + $H, E(x, \xi, t)$ $\tilde{H}, \tilde{E}(x, \xi, t)$ N(p)

 $t = \Delta^2 = (p' - p)^2$: squared momentum transfer

Deeply Virtual Compton Scattering

Exclusive electroproduction of a photon

Contribution from both DVCS and Bethe-Heitler (undistinguishable experimentally):

Exclusive electroproduction of a photon

Contribution from both DVCS and Bethe-Heitler (undistinguishable experimentally):

DVCS experiment

4

• One experiment with two data set: e1-dvcs1 (2005) H-S.Jo, and <u>e1-dvcs2</u> (2008)

• CLAS + dedicated equipment (IC electromagnetic calorimeter + solenoid)

at forward angles

lace Identification of the final-state particles: $e,\ p,\ \gamma$

$$\Delta \beta = \beta_{measured}^{SC} - \beta_{calculated}^{DC} (M_p) = \frac{d}{ct} - \frac{p}{\sqrt{p^2 + M_p^2}}$$

lace Identification of the final-state particles: $e,\ p,\ \gamma$

• Exclusivity selection of the DVCS channel

lacksquare Identification of the final-state particles: $e,\,p,\,\gamma$

 \blacksquare Exclusivity selection of the DVCS channel

• Evaluation of the contamination of the DVCS channel by the π^0 when one of the two photons is undetected: $ep \to ep\pi^0 \to ep\gamma(\gamma)$

lace Identification of the final-state particles: $e,\,p,\,\gamma$

 \blacksquare Exclusivity selection of the DVCS channel

• Evaluation of the contamination of the DVCS channel by the π^0 when one of the two photons is undetected: $ep \to ep\pi^0 \to ep\gamma(\gamma)$

• Acceptance computation: $\frac{N_{ep \gamma}^{REC} MC}{N_{ep \gamma}^{GEN} MC}$

lace Identification of the final-state particles: $e,\,p,\,\gamma$

 \blacksquare Exclusivity selection of the DVCS channel

• Evaluation of the contamination of the DVCS channel by the π^0 when one of the two photons is undetected: $ep \to ep\pi^0 \to ep\gamma(\gamma)$

• Acceptance computation: $\frac{N_{ep\gamma}^{REC} MC}{N_{ep\gamma}^{GEN} MC}$

• The integrated luminosity for the whole DVCS2 data set

lace Identification of the final-state particles: $e,\,p,\,\gamma$

 \blacksquare Exclusivity selection of the DVCS channel

• Evaluation of the contamination of the DVCS channel by the π^0 when one of the two photons is undetected: $ep \to ep\pi^0 \to ep\gamma(\gamma)$

• Acceptance computation: $\frac{N_{ep\gamma}^{REC} MC}{N_{ep\gamma}^{GEN} MC}$

• The integrated luminosity for the whole DVCS2 data set

• Hyper-volume computation of the bins

lace Identification of the final-state particles: $e,\,p,\,\gamma$

 \blacksquare Exclusivity selection of the DVCS channel

• Evaluation of the contamination of the DVCS channel by the π^0 when one of the two photons is undetected: $ep \to ep\pi^0 \to ep\gamma(\gamma)$

• Acceptance computation: $\frac{N_{ep\gamma}^{REC} MC}{N_{ep\gamma}^{GEN} MC}$

• The integrated luminosity for the whole DVCS2 data set

• Hyper-volume computation of the bins

The radiative corrections calculated in each bin in order to compute the cross section at the Born term: ~20 % in the BH approximation

Kinematic coverage of the e1-DVCS data and binning

Kinematic coverage of the e1-DVCS data and binning

DVCS differential cross section

DVCS differential cross section

Unpolarized cross section

Difference of polarized cross sections

Quasi-model-independent fitting procedure (M. Guidal, Eur. Phys. J. A 37, 319 (2008)):

10

 \rightarrow One does not extract the GPDs, but associated quantities called Compton Form Factors

$$\mathcal{T}^{DVCS} \propto \int_{-1}^{1} dx \frac{GPD(x,\xi,t)}{x \pm \xi \mp i\epsilon} = \mathcal{P} \int_{-1}^{1} dx \frac{GPD(x,\xi,t)}{x \pm \xi} \pm i\pi GPD(x = \mp\xi,\xi,t)$$
Real part Imaginary part

 \rightarrow One has two CFFs for each GPD $H, \tilde{H}, E, \tilde{E} \rightarrow 8$ CFFs

Quasi-model-independent fitting procedure (M. Guidal, Eur. Phys. J. A 37, 319 (2008)):

 \rightarrow One does not extract the GPDs, but associated quantities called Compton Form Factors

$$\mathcal{T}^{DVCS} \propto \int_{-1}^{1} dx \frac{GPD(x,\xi,t)}{x \pm \xi \mp i\epsilon} = \mathcal{P} \int_{-1}^{1} dx \frac{GPD(x,\xi,t)}{x \pm \xi} \pm i\pi GPD(x = \mp\xi,\xi,t)$$

Real part Imaginary part

 \rightarrow One has two CFFs for each GPD $H, \tilde{H}, E, \tilde{E} \rightarrow 8$ CFFs

- \rightarrow 2 independent observables, 8 unknowns (the CFFs):
 - \rightarrow Non-linear problem, strong correlations
 - \rightarrow Bounding the domain of variation of the CFFs (5xVGG)
- \rightarrow At fixed $(Q^2, x_B, -t)$, extraction of the CFFs from the unpolarized and polarized cross sections (x189 bins) with MINUIT + MINOS.

Quasi-model-independent fitting procedure (M. Guidal, Eur. Phys. J. A 37, 319 (2008)):

 \rightarrow One does not extract the GPDs, but associated quantities called Compton Form Factors

$$\mathcal{T}^{DVCS} \propto \int_{-1}^{1} dx \frac{GPD(x,\xi,t)}{x \pm \xi \mp i\epsilon} = \mathcal{P} \int_{-1}^{1} dx \frac{GPD(x,\xi,t)}{x \pm \xi} \pm i\pi GPD(x = \mp\xi,\xi,t)$$

Real part Imaginary part

 \rightarrow One has two CFFs for each GPD $H, \tilde{H}, E, \tilde{E} \rightarrow 8$ CFFs

- \rightarrow 2 independent observables, 8 unknowns (the CFFs):
 - \rightarrow Non-linear problem, strong correlations
 - \rightarrow Bounding the domain of variation of the CFFs (5xVGG)
- \rightarrow At fixed $(Q^2, x_B, -t)$, extraction of the CFFs from the unpolarized and polarized cross sections (x189 bins) with MINUIT + MINOS.
- \rightarrow Extraction of the real part and the imaginary part of the GPD H

10

 $\rightarrow \mathcal{H}_{Im}\mathcal{H}_{Re}$

Imaginary part of the CFF *H* for four values of *x*:

11

• Results of model-independent fit

 \mathcal{H}_{Im} is a combination of GPDs at the line: $x = \pm \xi$

Neglecting the antiquark contribution $\rightarrow H_{Im}(\xi, t) = H(\xi, \xi, t)$

Density distribution:
$$\rho(x = \xi, b) = \int_0^\infty \frac{dt}{4\pi} J_0(b\sqrt{t}) H(x = \xi, 0, t)$$
 M. Burkardt
Phys.Rev. D 62, 071503 (2000)
BUT: $H(\xi, 0, t) \neq H(\xi, \xi, t)$
Model dependent correction factors (VGG):

12

$$ightarrow rac{H(\xi,0,t)}{H(\xi,\xi,t)} ext{ Effect is } < 20\% ext{ } egin{array}{ccc} x_B & & x_B &$$

PHOTON 2013

0.6

<u>| | |</u> 0.8 = 0.185

= 0.245

= 0.4

1 1.2

1.4 -t (GeV²)

13

13

 \mathcal{H}_{Im} : Correlation between <u>transverse position</u> and <u>longitudinal momentum</u>

 \implies The sea quarks (low x) spread to the periphery of the nucleon

 \blacksquare The valence quarks (large x) remain in the center

Summary and outlook

15

 $lacet{O}$ GPDs are a unique tool to explore the internal landscape of the nucleon: \rightarrow 3D quark/gluon imaging of the nucleon

- Extraction of DVCS unpolarized and polarized cross sections in the largest kinematic domain ever explored in the valence region
- \bigcirc Extraction of the spatial densities as a function of x
- Analyses in the final stage to extract A_{UL} and $A_{LL}(H, H)$ from CLAS data at 6 GeV with longitudinally-polarized target
 - Dedicated GPD program at Jlab 12GeV: Target spin asymmetry: A_{UT} , A_{LT} Beam/Target spin asymmetries: A_{UL} , A_{LU} DVMP: pseudoscalar/vector mesons

PHOTON 2013

16

Baptiste GUEGAN

$$\mathcal{T}^{DVCS} \propto \int_{-1}^{1} dx \frac{f(x,\xi,t)}{x\pm\xi\mp i\epsilon} = \mathcal{P} \int_{-1}^{1} dx \frac{f(x,\xi,t)}{x\pm\xi} \pm i\pi f(x=\mp\xi,\xi,t)$$

—			
	Real part	Imaginary part	
	$\mathcal{H}_{Re}(\xi,t) = \mathcal{P}\int_0^1 dx [H(x,\xi,t) - H(-x,\xi,t)] C^+(x,\xi)$	$\mathcal{H}_{Im}(\xi,t) = H(\xi,\xi,t) - H(-\xi,\xi,t)$	
	$\mathcal{E}_{Re}(\xi,t) = \mathcal{P}\int_0^1 dx [E(x,\xi,t) - E(-x,\xi,t)] C^+(x,\xi)$	$\mathcal{E}_{Im}(\xi,t) = E(\xi,\xi,t) - E(-\xi,\xi,t)$	
	$\tilde{\mathcal{H}}_{Re}(\xi,t) = \mathcal{P}\int_0^1 dx [\tilde{H}(x,\xi,t) + \tilde{H}(-x,\xi,t)] C^-(x,\xi)$	$\tilde{\mathcal{H}}_{Im}(\xi,t) = \tilde{H}(\xi,\xi,t) + \tilde{H}(-\xi,\xi,t)$	
	$\tilde{\mathcal{E}}_{Re}(\xi,t) = \mathcal{P} \int_0^1 dx [\tilde{E}(x,\xi,t) + \tilde{E}(-x,\xi,t)] C^-(x,\xi)$	$\tilde{\mathcal{E}}_{Im}(\xi,t) = \tilde{E}(\xi,\xi,t) + \tilde{E}(-\xi,\xi,t)$	
-			

17

With:
$$C^{\pm}(x,\xi) = \frac{1}{x-\xi} \pm \frac{1}{x+\xi}$$

PHOTON 2013

Baptiste GUEGAN

	Sensitivity	Experiment
	$\propto {\cal H}_{Re}$	H1 ((2001), (2005), (2008))
$\sigma = \sigma^{\rightarrow} \pm \sigma^{\leftarrow}$		ZEUS ((2003), (2009))
$\int O_{unp} = O + O$		Hall-A (2006)
		Hall-B (E1-DVCS experiment: data under analysis)
$\sigma = \sigma^{\rightarrow} \sigma^{\leftarrow}$	$\propto {\cal H}_{Im}$	Hall-A (2006)
$O_{pol} = O = O$		Hall-B (E1-DVCS experiment: data under analysis)
\mathcal{A}_C	$\propto {\cal H}_{Re}$	HERMES ((2007), (2008), (2009))
1	$\propto {\cal H}_{Im}$	HERMES ((2001) , (2009))
ALU		Hall-B ((2001) , (2008))
	$\propto \mathcal{H}_{Im}, \tilde{\mathcal{H}}_{Im}$	Hall-B (2006)
\mathcal{A}_{UL}		HERMES (2010)
		Hall-B (Eg1-DVCS experiment: data under analysis)
1	$\propto {\cal H}_{Re}, { ilde {\cal H}}_{Re}$	HERMES (2010)
A_{LL}		Hall-B (Eg1-DVCS experiment: data under analysis)
1	$\propto \mathcal{E}_{Im}$	HERMES (2008)
AUT		Hall-B proposal
A _	$\propto \mathcal{H}_{Re}, \mathcal{E}_{Re}$	HERMES (2011)
A_{LT}		Hall-B proposal

- The second moment of (E+H) when $t \rightarrow 0$: total angular momentum

$$\int_{-1}^{1} dx \, x \, [H^q(x,\xi,0) + E^q(x,\xi,0)] = 2 J_{quarks} \qquad \text{(Ji sum rule)}$$
Nucleon spin decomposotion: $\frac{1}{2} = J_{quarks} + J_{gluons} = S_{quarks} + L_{quarks} + S_{gluons} + L_{gluons}$

$$EMC: \approx 30\% \qquad COMPASS, STAR, PHENIX: \approx 0\%$$

• At $\xi = 0$, a GPD is a x-decomposition of the form factor:

PHOTON 2013

Baptiste GUEGAN

Figure 54. "Deskewing" factor $H(\xi, 0, t)/H(\xi, \xi, t)$ as a function of -t for the VGG model (red curves), the GK model (blue curves) and the dual model (black curves). The solid curves correspond to $x_B=0.1$ (HERMES kinematics) and the dashed ones to $x_B=0.25$ (CLAS kinematics).

20

PHOTON 2013

Baptiste GUEGAN