Theory introduction

Samuel Wallon

Université Pierre et Marie Curie and Laboratoire de Physique Théorique CNRS / Université Paris Sud Orsay

20th International Workshop on Photon-Photon Collisions PHOTON 2013

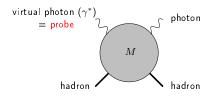
May 22nd 2013

Paris, LPNHE

Exclusive processes are theoretically challenging

How to deal with QCD?

example: Compton scattering



• AdS/CFT \Rightarrow AdS/QCD : $AdS_5 \times S^5 \leftrightarrow QCD$

- \bullet Aim: describe M by separating:
 - quantities non-calculable perturbatively some tools:
 - Discretization of QCD on a 4-d lattice: numerical simulations
 - Polchinski, Strassler '01
 for some issues related to Deep Inelastic Scattering (DIS):
 B. Pire, L. Szymanowski, C. Roiesnel, S. W. Phys.Lett. B670 (2008) 84-90
 for some issues related to Deep Virtual Compton Scattering (DVCS):
 J.-H. Gao and B.-W. Xiao '10: C. Marquet, C. Roiesnel, S. W. JHEP 1004:051 (2010) 1-26
 - pertubatively calculable quantities
- We will here focus on theory and phenomenology of exclusive processes for which the dynamics is governed by QCD in the perturbative regime

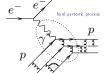
Exclusive processes are phenomenologically challenging

Key question of QCD:

how to obtain and understand the tri-dimensional structure of hadrons in terms of quarks and gluons?

Can this be achieved using hard exclusive processes?

- The aim is to reduce the process to interactions involving a small number of partons (quarks, gluons), despite confinement
- This is possible if the considered process is driven by short distance phenomena ($d \ll 1 \, \text{fm}$)
- $\implies \alpha_s \ll 1$: Perturbative methods One should hit strongly enough a hadron
 - Example: electromagnetic probe and form factor



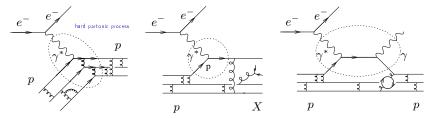
Introduction

au electromagnetic interaction $\sim au$ parton life time after interaction $\ll au$ caracteristic time of strong interaction

To get such situations in exclusive reactions is very challenging phenomenologically: the cross sections are very small

Hard processes in QCD

- This is justified if the process is governed by a hard scale:
 - virtuality of the electromagnetic probe in elastic scattering $e^\pm\,p\to e^\pm\,p$ in Deep Inelastic Scattering (DIS) $e^\pm\,p\to e^\pm\,X$ in Deep Virtual Compton Scattering (DVCS) $e^\pm\,p\to e^\pm\,p\,\gamma$
 - ullet Total center of mass energy in $e^+e^- o X$ annihilation
 - \bullet t-channe| momentum exchange in meson photoproduction $\gamma\,p\to M\,p$
- A precise treatment relies on factorization theorems
- The scattering amplitude is described by the convolution of the partonic amplitude with the non-perturbative hadronic content



The partonic point of view... and its limitations

Counting rules:

$$F_n(q^2) \simeq rac{C}{(Q^2)^{n-1}}$$
 $n=$ number of minimal constituents: $\left\{egin{array}{l} {
m meson:} \ n=2 \\ {
m baryon:} \ n=3 \end{array}
ight.$

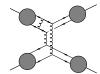
Brodsky, Farrar '73

• Large angle (i.e. $s\sim t\sim u$ large) elastic processes $h_a\,h_b\to h_a\,h_b$ e.g. : $\pi\pi\to\pi\pi$ or $p\,p\to p\,p$

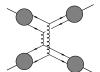
$$\frac{d\sigma}{dt} \sim \left(\frac{\alpha_S(p_\perp^2)}{s}\right)^{n-2} \; n = \# \; \text{of external fermionic lines} \; (n=8 \; \text{for} \; \pi\pi \to \pi\pi)$$

Brodsky, Lepage '81

Other contributions might be significant, even at large angle: e.g. $\pi\pi o \pi\pi$



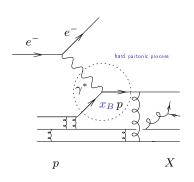
Brodsky Lepage
$$\mbox{mecanism:} \ \frac{d\sigma_{BL}}{dt} \sim \left(\frac{1}{s}\right)^6$$



Landshoff '74 mecanism: $\frac{d\sigma_L}{dt} \sim \left(\frac{1}{s}\right)^5$

Accessing the perturbative proton content using inclusive processes no 1/Q suppression

example: DIS



$$s_{\gamma^* p} = (q_{\gamma}^* + p_p)^2 = 4 E_{\text{c.m.}}^2$$

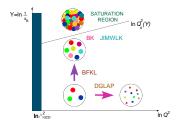
$$Q^2 \equiv -q_{\gamma^*}^2 > 0$$

$$x_B = \frac{Q^2}{2 p_p \cdot q_{\gamma}^*} \simeq \frac{Q^2}{s_{\gamma^* p}}$$

- ullet $x_B =$ proton momentum fraction carried by the scattered quark
- ullet 1/Q= transverse resolution of the photonic probe $\ll 1/\Lambda_{QCD}$

QCD at large s

The various regimes governing the perturbative content of the proton



• "usual" regime: x_B moderate ($x_B \gtrsim .01$): Evolution in Q governed by the QCD renormalization group (Dokshitser, Gribov, Lipatov, Altarelli, Parisi equation)

$$\sum_{n} (\alpha_s \ln Q^2)^n + \alpha_s \sum_{n} (\alpha_s \ln Q^2)^n + \cdots$$
LLQ NLLQ

ullet perturbative Regge limit: $s_{m{\gamma}^*m{p}} o \infty$ i.e. $x_B \sim Q^2/s_{m{\gamma}^*m{p}} o 0$ in the perturbative regime (hard scale Q^2) (Balitski Fadin Kuraev Lipatov equation)

$$\sum_{n} (\alpha_s \ln s)^n + \alpha_s \sum_{n} (\alpha_s \ln s)^n + \cdots$$
LLs NLLs

From inclusive to exclusive processes

Introduction

Experimental effort

- Inclusive processes are not 1/Q suppressed (e.g. DIS); Exclusive processes are suppressed
- Going from inclusive to exclusive processes is difficult
- High luminosity accelerators and high-performance detection facilities HERA (H1, ZEUS), HERMES, JLab@6 GeV (Hall A, CLAS), BaBar, Belle, BEPC-II (BES-III)

future: LHC, COMPASS-II, JLab@12 GeV, LHeC, EIC, ILC

- What to do. and where?
 - Proton form factor: JLab@6 GeV future: PANDA (timelike proton form factor through $p\bar{p} \rightarrow e^+e^-$)
 - e^+e^- in $\gamma^*\gamma$ single-tagged channel: Transition form factor $\gamma^*\gamma \to \pi$, exotic hybrid meson production BaBar, Belle, BES,...
 - Deep Virtual Compton Scattering (GPD) HERA (H1. ZEUS), HERMES, JLab@6 GeV future: JLab@12GeV, COMPASS-II, EIC, LHeC
 - Non exotic and exotic hybrid meson electroproduction (GPD and DA), etc... NMC (CERN), E665 (Fermilab), HERA (H1, ZEUS), COMPASS, HERMES, CLAS (JLab)
 - TDA (PANDA at GSI)
 - TMDs (BaBar, Belle, COMPASS, ...)
 - Diffractive processes, including ultraperipheral collisions LHC (with or without fixed targets), ILC, LHeC

Theoretical efforts

Very important theoretical developments during the last decade

Key words:

Introduction

```
DAs, GPDs, GDAs, TDAs ... TMDs
```

- Fundamental tools:
 - At medium energies:

```
JLab, HERMES, COMPASS, BaBar, Belle, PANDA, EIC
```

collinear factorization

At asymptotical energies:

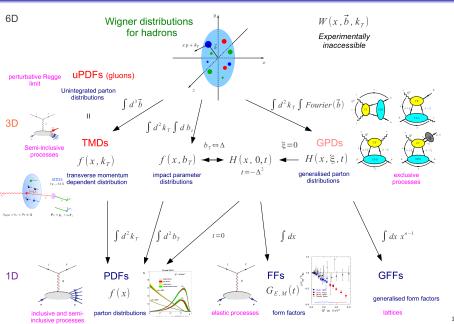
HERA, Tevatron, LHC, LHeC, ILC (EIC and COMPASS at the boundary)

 k_T -factorization

We will now explain and illustrate these concepts, and discuss issues and possible solutions...

The ultimate picture

Introduction



Conclusion

• DIS: inclusive process \rightarrow forward amplitude (t = 0) (optical theorem)

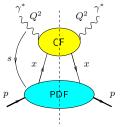
(DIS: Deep Inelastic Scattering)

ex: $e^{\pm}p \rightarrow e^{\pm}X$ at HERA

 $x \Rightarrow 1$ -dimensional structure

Structure Function

$$=$$
 Coefficient Function \otimes Parton Distribution Function (hard) (soft)



• DVCS: exclusive process \rightarrow non forward amplitude $(-t \ll s = W^2)$

(DVCS: Deep Vitual Compton Scattering)

Fourier transf: $t \leftrightarrow \text{impact parameter}$ $(x, t) \Rightarrow 3$ -dimensional structure Amplitude

Coefficient Function (soft) (hard)

Müller et al. '91 - '94; Radyushkin '96; Ji '97



Extensions from DVCS

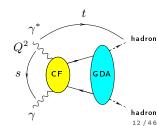
ullet Meson production: γ replaced by $ho,\ \pi,\cdots$

Amplitude
$$s$$
 $S = \begin{array}{ccc} \mathsf{GPD} & \otimes & \mathsf{CF} & \otimes & \mathsf{Distribution} & \mathsf{Amplitude} \\ \mathsf{(soft)} & \mathsf{(hard)} & \mathsf{(soft)} \end{array}$

Collins, Frankfurt, Strikman '97; Radyushkin '97

• Crossed process: $s \ll -t$

Diehl, Gousset, Pire, Teryaev '98



CF

GPD

 $-\bar{u}$

 $x - \xi$

h'

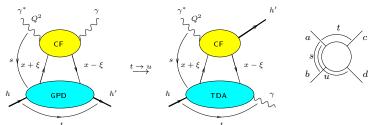
Extensions from DVCS

Introduction

 Starting from usual DVCS, one allows: initial hadron ≠ final hadron (in the same octuplet): transition GPDs

Even less diagonal:

baryonic number (initial state) \neq baryonic number (final state) \rightarrow TDA Example:



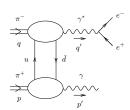
Pire, Szymanowski '05

which can be further extended by replacing the outoing γ by any hadronic state

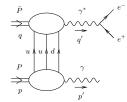
Amplitude = Transition Distribution Amplitude & CF & DA (soft) (hard) (soft)

Extensions from DVCS

Introduction

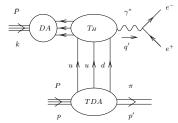


TDA at PANDA



TDA $\pi \to \gamma$

TDA $p
ightarrow \gamma$ at PANDA (forward scattering of $ar{p}$ on a p probe)



TDA $p
ightarrow \pi$ at PANDA (forward scattering of $ar{p}$ on a p probe)

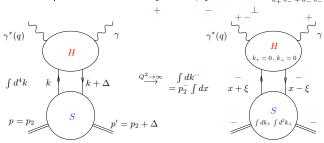
Spectral model for the $p
ightarrow \pi$ TDA: Pire, Semenov, Szymanowski '10

Two steps for factorization

ullet momentum factorization: light-cone vector dominance for $Q^2 o\infty$

$$p_1,\;p_2\text{ : the two light-cone directions } \left\{\begin{array}{ll} p_1=\frac{\sqrt{\pi}}{2}(1,0_\perp,1) & p_1^2=p_2^2=0 \\ \\ p_2=\frac{\sqrt{\pi}}{2}(1,0_\perp,-1) & 2\;p_1\cdot p_2=s\sim s_{\gamma^*p}\gtrsim Q^2 \end{array}\right.$$

Sudakov decomposition: $k = \alpha p_1 + \beta p_2 + k_{\perp} \frac{a \cdot b}{a_{\perp} b_{\perp} + a_{\perp} b_{\perp} + a_{\perp} \cdot b_{\perp}}$



$$\int d^4k \ S(k, k + \Delta) \ H(q, k, k + \Delta) \ = \ \int dk^- \int dk^+ d^2k_\perp \ S(k, k + \Delta) \ \ \frac{H(q, k^-, k^- + \Delta^-)}{h(q, k^-, k^- + \Delta^-)}$$

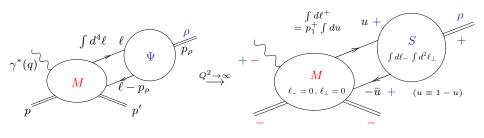
Quantum numbers factorization (Fierz identity: spinors + color)

$$\Rightarrow$$
 $\mathcal{M} = \text{GPD} \otimes \text{Hard part}$

What is a ρ -meson in QCD?

Introduction

It is described by its wave function Ψ which reduces in hard processes to its Distribution Amplitude



$$\int d^4 \ell \ M(q, \, \ell, \, \ell - p_\rho) \Psi(\ell, \, \ell - p_\rho) \ = \int d\ell^+ \, M(q, \, \ell^+, \, \ell^+ - p_\rho^+) \ \int d\ell^- \int^{|\ell_\perp^2| \, < \, \mu_\rho^2} d^2 \ell_\perp \, \Psi(\ell, \, \ell - p_\rho)$$

Hard part

(see Chernyak, Zhitnitsky '77; Brodsky, Lepage '79; Efremov, Radyushkin '80; ... in the case of form-factors studies)

DA $\Phi(u, \mu_F^2)$

 $\int d^4k \, d^4\ell$

Collinear factorization Meson electroproduction: factorization with a GPD and a DA



$$=\int dk^- d\ell^+ \int dk^+ \int d^2k_\perp \, S(k,\,k+\Delta) \, H(q;\,k^-,\,k^-+\Delta^-;\ell^+,\,\ell^+-p_\rho^+) \int d\ell^- \int d^2\ell_\perp \Psi(\ell,\,\ell-p_\rho)$$

$$\mathsf{GPD} \, F(x,\,\xi,t,\mu_{F_2}^2) \qquad \mathsf{Hard part} \, T(x/\xi,u,\mu_{F_1}^2,\mu_{F_2}^2,\mu_R^2) \qquad \mathsf{DA} \, \Phi(u,\mu_{F_1}^2)$$

 $H(a, k, k + \Delta)$

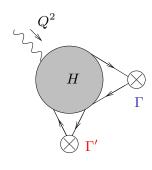
Collins, Frankfurt, Strikman '97; Radyushkin '97

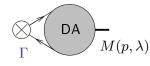
 $S(k, k + \Delta)$

 $\Psi(\ell, \ell - p_{\rho})$

Collinear factorization Meson electroproduction: factorization with a GPD and a DA

The building blocks





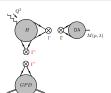


 Γ , Γ' : Dirac matrices compatible with quantum numbers: C, P, T, chirality

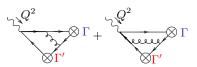
Similar structure for gluon exchange

Collinear factorization Meson electroproduction: factorization with a GPD and a DA

The building blocks



Introduction



hand-bag diagrams

$$\bigcap_{\Gamma} \mathsf{DA} = \bigcap_{M(p,\lambda)} \mathsf{DA}$$

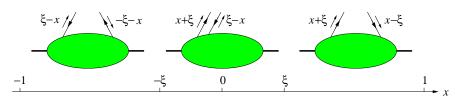
$$\langle M(p,\lambda)|\mathcal{O}(\Psi,\,\bar{\Psi}\,A)|0\rangle$$

matrix element of a non-local light-cone operator

$$\langle N(p')|\mathcal{O}'(\Psi, \bar{\Psi}A)|N(p)\rangle$$

matrix element of a non-local light-cone operator

Physical interpretation for GPDs



Emission and reabsoption of an antiquark

~ PDFs for antiquarks DGLAP-II region Emission of a quark and emission of an antiquark

 \sim meson exchange ERBL region

Emission and reabsoption of a quark

~ PDFs for quarks DGLAP-I region

Collinear factorization Twist 2 GPDs

Introduction

Classification of twist 2 GPDs

- For quarks, one should distinguish the exchanges
 - without helicity flip (chiral-even Γ' matrices): 4 chiral-even GPDs:

$$\begin{split} & \stackrel{H^q}{H^q} \xrightarrow{\xi=0,t=0} \operatorname{PDF} q, \stackrel{E^q}{E^q}, \stackrel{\tilde{H}^q}{\tilde{H}^q} \xrightarrow{\xi=0,t=0} \operatorname{polarized} \operatorname{PDFs} \Delta q, \stackrel{\tilde{E}^q}{\tilde{L}^q} \\ & F^q = \frac{1}{2} \int \frac{dz^+}{2\pi} e^{ixP^-z^+} \langle p' | \, \bar{q}(-\frac{1}{2}z) \, \gamma^- q(\frac{1}{2}z) \, | p \rangle \Big|_{z^-=0,\,z_\perp=0} \\ & = \frac{1}{2P^-} \left[\stackrel{H^q}{H^q}(x,\xi,t) \, \bar{u}(p') \gamma^- u(p) + \stackrel{E^q}{E^q}(x,\xi,t) \, \bar{u}(p') \frac{i \, \sigma^{-\alpha} \Delta_\alpha}{2m} u(p) \, \right], \\ & \tilde{F}^q = \frac{1}{2} \int \frac{dz^+}{2\pi} e^{ixP^-z^+} \langle p' | \, \bar{q}(-\frac{1}{2}z) \, \gamma^- \gamma_5 \, q(\frac{1}{2}z) \, | p \rangle \Big|_{z^-=0,\,z_\perp=0} \end{split}$$

$$2 \int 2\pi \int \frac{2\pi}{2\pi} |\vec{P}|^{2} |z-0, z_{\perp}=0$$

$$= \frac{1}{2P^{-}} \left[\frac{\tilde{H}^{q}(x, \xi, t) \bar{u}(p') \gamma^{-} \gamma_{5} u(p) + \tilde{E}^{q}(x, \xi, t) \bar{u}(p') \frac{\gamma_{5} \Delta^{-}}{2m} u(p) \right].$$

• with helicity flip (chiral-odd Γ' mat.): 4 chiral-odd GPDs:

$$H_T^q \xrightarrow{\xi=0,t=0}$$
 quark transversity PDFs $\Delta_T q$, E_T^q , \tilde{H}_T^q , \tilde{E}_T^q

$$\begin{split} &\frac{1}{2} \int \frac{dz^+}{2\pi} e^{ixP^-z^+} \langle p' | \, \bar{q}(-\frac{1}{2}z) \, i \, \sigma^{-i} \, q(\frac{1}{2}z) \, | p \rangle \Big|_{z^-=0, \, z_\perp=0} \\ &= \frac{1}{2P^-} \bar{u}(p') \left[\frac{H^q_T}{T} i \sigma^{-i} + \tilde{H}^q_T \, \frac{P^-\Delta^i - \Delta^-P^i}{m^2} + \frac{E^q_T}{T} \frac{\gamma^-\Delta^i - \Delta^-\gamma^i}{2m} + \tilde{E}^q_T \, \frac{\gamma^-P^i - P^-\gamma^i}{m} \right] \end{split}$$

Classification of twist 2 GPDs

- analogously, for gluons:
 - 4 gluonic GPDs without helicity flip:

$$\begin{array}{c} H^g \xrightarrow{\xi=0,t=0} \operatorname{PDF} x\,g \\ E^g \xrightarrow{\tilde{E}=0,t=0} \operatorname{polarized} \operatorname{PDF} x\,\Delta g \end{array}$$

4 gluonic GPDs with helicity flip:

$$H_T^g$$

$$E_T^g$$

$$\tilde{H}_T^g$$

$$\tilde{E}_T^g$$

(no forward limit reducing to gluons PDFs here: a change of 2 units of helicity cannot be compensated by a spin 1/2 target)

Quark model and meson spectroscopy

• spectroscopy: $\vec{J} = \vec{L} + \vec{S}$; neglecting any spin-orbital interaction $\Rightarrow S, L = \text{additional quantum numbers to classify hadron states}$

$$\vec{J}^2 = J(J+1), \quad \vec{S}^2 = S(S+1), \quad \vec{L}^2 = L(L+1),$$

with
$$J = |L - S|, \cdots, L + S$$

ullet In the usual quark-model: meson $=qar{q}$ bound state with

$$C = (-)^{L+S}$$
 and $P = (-)^{L+1}$.

Thus:

Introduction

$$S=0\,,\quad L=J,\quad J=0\,,\,1,\,2,\dots:\quad J^{PC}=0^{-+}(\pi,\eta),\,1^{+-}(h_1,b_1),\,2^{-+},\,3^{+-},\,\dots$$

 $S=1\,,\quad L=0\,,\quad J=1\,:\qquad \qquad J^{PC}=1^{--}(\rho,\omega,\phi)$
 $L=1\,,\quad J=0\,,\,1,\,2\,:\qquad J^{PC}=0^{++}(f_0,a_0),\,1^{++}(f_1,a_1),\,2^{++}(f_2,a_2)$

$$L=2$$
, $J=1, 2, 3$: $J^{PC}=1^{--}, 2^{--}, 3^{--}$

...

• \Rightarrow the exotic mesons with $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, \cdots$ are forbidden

Experimental candidates for light hybrid mesons (1)

three candidates:

Introduction

- $\pi_1(1400)$
 - GAMS '88 (SPS, CERN): in $\pi^- p \to \eta \pi^0 n$ (through $\eta \pi^0 \to 4\gamma$ mode) M= 1406 \pm 20 MeV $\Gamma=180\pm30$ MeV
 - E852 '97 (BNL): $\pi^- p \to \eta \pi^- p$ M=1370 ± 16 MeV $\Gamma = 385 \pm 40$ MeV
 - VES '01 (Protvino) in $\pi^ Be \to \eta \pi^-$ Be, $\pi^ Be \to \eta' \pi^-$ Be, $\pi^ Be \to b_1 \pi^-$ BeM = 1316 \pm 12 MeV $\Gamma = 287 \pm 25$ MeV but resonance hypothesis ambiguous
 - Crystal Barrel (LEAR, CERN) '98 '99 in $\bar{p}\,n\to\pi^-\,\pi^0\,\eta$ and $\bar{p}\,p\to2\pi^0\,\eta$ (through $\pi\eta$ resonance) M=1400 \pm 20 MeV $\Gamma=310\pm50$ MeV and M=1360 \pm 25 MeV $\Gamma=220\pm90$ MeV

Experimental candidates for light hybrid mesons (2)

• $\pi_1(1600)$

Introduction

- E852 (BNL): in peripheral $\pi^-p \to \pi^+\pi^-\pi^-p$ (through $\rho\pi^-$ mode) '98 '02, M = 1593 ± 8 MeV $\Gamma = 168 \pm 20$ MeV $\pi^-p \to \pi^+\pi^-\pi^-\pi^0\pi^0p$ (in $b_1(1235)\pi^- \to (\omega\pi^0)\pi^- \to (\pi^+\pi^-\pi^0)\pi^0\pi^-$ '05 and $f_1(1285)\pi^-$ '04 modes), in peripheral π^-p through $\eta^*\pi^-$ '01 M = 1597 ± 10 MeV $\Gamma = 340 \pm 40$ MeV but E852 (BNL) '06: no exotic signal in $\pi^-p \to (3\pi)^-p$ for a larger sample of data!
- VES '00 (Protvino): in peripheral π^-p through $\eta'\pi^-$ '93, '00, $\rho(\pi^+\pi^-)\pi^-$ '00, $b_1(1235)\pi^- \to (\omega\pi^0)\pi^-$ '00
- ullet Crystal Barrel (LEAR, CERN) '03 $ar p p o b_1(1235)\pi\pi$
- COMPASS '10 (SPS, CERN): diffractive dissociation of π^- on Pb target through Primakov effect $\pi^-\gamma \to \pi^-\pi^-\pi^+$ (through $\rho\pi^-$ mode) M = 1660 \pm 10 MeV $\Gamma=269\pm21$ MeV
- $\pi_1(2000)$: seen only at E852 (BNL) '04 '05 (through $f_1(1285)\pi^-$ and $b_1(1235)\pi^-$)

What about hard processes?

- Is there a hope to see such states in hard processes, with high counting rates, and to exhibit their light-cone wave-function?
- hybrid mesons = qqq states
 T. Barnes '77; R. L. Jaffe, K. Johnson, and Z. Ryzak, G. S. Bali
- popular belief: $H=q\bar{q}g\Rightarrow$ higher Fock-state component \Rightarrow twist-3 \Rightarrow hard electroproduction of H versus ρ suppressed as 1/Q
- This is not true!! Electroproduction of hybrid is similar to electroproduction of usual ρ -meson: it is twist 2 dominated
 - I. V. Anikin, B. Pire, O. V. Teryaev, L. Szymanowski, S.W. '04

Distribution amplitude of exotic hybrid mesons at twist 2

• One may think that to produce $|q\bar{q}g\rangle$, the fields Ψ , $\bar{\Psi}$, A should appear explicitly in the non-local operator $\mathcal{O}(\Psi, \bar{\Psi}\,A)$



- If one tries to produce $H=1^{-+}$ from a local operator, the dominant operator should be $\bar{\Psi}\gamma^\mu G_{\mu\nu}\Psi$ of twist = dimension spin = 5 1 = 4
- It means that there should be a $1/Q^2$ suppression in the production amplitude of H versus the usual ρ -production (which is twist 2 dominated)
- But collinear approach describes hard exclusive processes in terms of non-local light-cone operators, among which are the twist 2 operator

$$\bar{\psi}(-z/2)\gamma_{\mu}[-z/2;z/2]\psi(z/2)$$

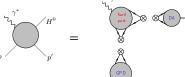
where [-z/2;z/2] is a Wilson line, necessary to fullfil gauge invariance (i.e. a "color tube" between q and \bar{q}) which thus hides gluonic degrees of freedom: the needed gluon is there, at twist 2. This does not requires to introduce explicitly A!

A few applications Production of an exotic hybrid meson in hard processes

Introduction

Accessing the partonic structure of exotic hybrid mesons

• Electroproduction $\gamma^* p \to H^0 p$: JLab, COMPASS, EIC



prediction: $\frac{d\sigma^H}{dr} \approx 15\%$

- I. V. Anikin, B. Pire, O. V. Teryaev, L. Szymanowski, S.W. Phys. Rev. D70 (2004) 011501 Phys. Rev. D71 (2005) 034021 Eur. Phys. J. C42 (2005) 163
- Channels $\gamma^* \gamma \to H$ and $\gamma^* \gamma \to \pi \eta$: BaBar, Belle, BES-III

$$\prod_{H^0} = \prod_{\text{part}} \frac{\left| M^{\gamma^* \gamma \to H} \right|^2}{\left| M^{\gamma^* \gamma \to \pi^0} \right|^2} \approx 20\%$$

I. V. Anikin, B. Pire, O. V. Teryaev, L. Szymanowski, S.W.

Eur. Phys. J. C 47 (2006)

⇒ the partonic content of exotic hybrid meson is experimentally accessible

[backup]

A few applications Spin transversity in the nucleon

Introduction

What is transversity?

Tranverse spin content of the proton:

$$\begin{array}{ccc} |\uparrow\rangle_{(x)} & \sim & |\rightarrow\rangle + |\leftarrow\rangle \\ |\downarrow\rangle_{(x)} & \sim & |\rightarrow\rangle - |\leftarrow\rangle \\ \text{spin along } x & \text{helicity state} \end{array}$$

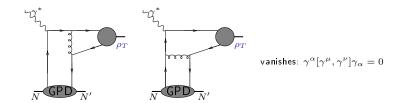
- An observable sensitive to helicity spin flip gives thus access to the transversity $\Delta_T q(x)$, which is very badly known (first data have recently been obtained by COMPASS)
- The transversity GPDs are completely unknown
- Chirality: $q_{\pm}(z) \equiv \frac{1}{2}(1\pm\gamma^5)q(z)$ with $q(z)=q_{+}(z)+q_{-}(z)$ Chiral-even: chirality conserving $\bar{q}_{\pm}(z)\gamma^{\mu}q_{\pm}(-z)$ and $\bar{q}_{\pm}(z)\gamma^{\mu}\gamma^5q_{\pm}(-z)$ Chiral-odd: chirality reversing $\bar{q}_{\pm}(z)\cdot 1\cdot q_{\mp}(-z), \quad \bar{q}_{\pm}(z)\cdot \gamma^5\cdot q_{\mp}(-z)$ and $\bar{q}_{\pm}(z)[\gamma^{\mu},\gamma^{\nu}]q_{\mp}(-z)$
- For a massless (anti)particle, chirality = (-)helicity
- Transversity is thus a chiral-odd quantity
- QCD and QED are chiral even $\Rightarrow A \sim (\mathsf{Ch.-odd})_1 \otimes (\mathsf{Ch.-odd})_2$

How to get access to transversity?

- The dominant DA for ρ_T is of twist 2 and chiral-odd ($[\gamma^{\mu}, \gamma^{\nu}]$ coupling)
- Unfortunately $\gamma^* N^{\uparrow} \rightarrow \rho_T N' = 0$
 - this is true at any order in perturbation theory (i.e. corrections as powers of α_s), since this would require a transfer of 2 units of helicity from the proton: impossible!

 Diehl. Gousset. Pire '99: Collins. Diehl '00

 - diagrammatic argument at Born order:



Can one circumvent this vanishing?

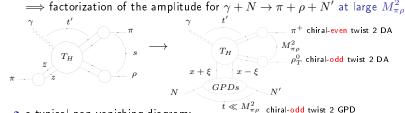
- This vanishing is true only a twist 2
- At twist 3 this process does not vanish
- However processes involving twist 3 DAs may face problems with factorization (end-point singularities: see later)
- The problem of classification of twist 3 chiral-odd GPDs is still open: Pire, Szymanowski, S.W. in progress, in the spirit of our Light-Cone Collinear Factorization framework recently developped (Anikin, Ivanov, Pire, Szymanowski, S. W.)

Collinear factorizations

Introduction

$\gamma N \to \pi^+ \rho_T^0 N'$ gives access to transversity

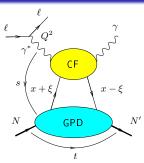
ullet Factorization à la Brodsky Lepage of $\gamma+\pi o \pi+
ho$ at large s and fixed angle (i.e. fixed ratio t'/s, u'/s)



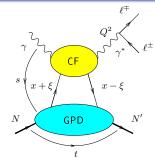
a typical non-vanishing diagram:

M. El Beiyad, P. Pire, M. Segond, L. Szymanowski, S.W. Phys.Lett.B688:154-167.2010 see also, at large s, with Pomeron exchange: R. Ivanov, B. Pire, L. Symanowski, O. Tervaev '02 R. Enberg, B. Pire, L. Symanowski '06

 These processes with 3 body final state can give access to all GPDs: $M_{\pi a}^2$ plays the role of the γ^* virtuality of usual DVCS (here in the time-like domain) JLab, COMPASS



Deeply Virtual Compton Scattering $lN
ightarrow l'N' \gamma$



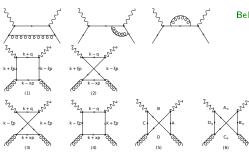
Timelike Compton Scattering $\gamma N \rightarrow l^+ l^- N'$

- TCS versus DVCS:
 - universality of the GPDs
 - another source for GPDs (special sensitivity on real part)
 - spacelike-timelike crossing and understanding the structure of the NLO corrections
- Where to measure TCS? In Ultra Peripheral Collisions LHC, JLab, COMPASS, AFTER

Threshold effects for DVCS and TCS DVCS and TCS at NLO

Introduction

One loop contributions to the coefficient function



Belitsky, Mueller, Niedermeier, Schafer, Phys.Lett.B474, 2000 Pire, Szymanowski, Wagner Phys.Rev.D83, 2011

$$\mathcal{A}^{\mu\nu} = g_T^{\mu\nu} \int_{-1}^1 dx \left[\sum_{q}^{n_F} T^q(x) F^q(x) + T^g(x) F^g(x) \right]$$

(symmetric part of the factorised amplitude)

Threshold effects for DVCS and TCS Resummations effects are expected

ullet The renormalized quark coefficient functions T^q is

$$T^{q} = C_{0}^{q} + C_{1}^{q} + C_{coll}^{q} \log \frac{|Q^{2}|}{\mu_{F}^{2}}$$

$$C_{0}^{q} = e_{q}^{2} \left(\frac{1}{x - \xi + i\varepsilon} - (x \to -x)\right)$$

$$C_{1}^{q} = \frac{e_{q}^{2} \alpha_{S} C_{F}}{4\pi (x - \xi + i\varepsilon)} \left[\log^{2} \left(\frac{\xi - x}{2\xi} - i\varepsilon\right) + \ldots\right] - (x \to -x)$$

$$(x + \xi)p \qquad (x - \xi)p \qquad \text{Usual collinear approach: single-scale analysis w.r.t. } Q^{2}$$

 F^q

Introduction

$$T^{q} = C_{0}^{q} + C_{1}^{q} + C_{coll}^{q} \log \frac{|Q^{2}|}{\mu_{F}^{2}}$$

$$C_{0}^{q} = e_{q}^{2} \left(\frac{1}{x - \xi + i\varepsilon} - (x \to -x) \right)$$

$$C_{1}^{q} = \frac{e_{q}^{2} \alpha_{S} C_{F}}{4\pi (x - \xi + i\varepsilon)} \left[\log^{2} \left(\frac{\xi - x}{2\xi} - i\varepsilon \right) + \dots \right] - (x \to -x)$$

functions

• Consider the invariants
$${\cal S}$$
 and ${\cal U}$:

$$\mathcal{S} = rac{x-\xi}{2\xi} \, Q^2 \quad \ll \quad Q^2 \quad \text{ when } x o \xi$$
 $\mathcal{U} = -rac{x+\xi}{2\xi} \, Q^2 \quad \ll \quad Q^2 \quad \text{ when } x o -\xi$

$$\Rightarrow$$
 two scales problem; threshold singularities to be resummed analogous to the $\log(x-x_{Bj})$ resummation for DIS coefficient

Soft-collinear resummation effects for the coefficient function

- The resummation easier when using the axial gauge $p_1 \cdot A = 0$ $(p_{\gamma} \equiv p_1)$
- The dominant diagram are ladder-like [backup]

$$x + \xi$$
 $x + \xi$
 $x - \xi$

Introduction

resummed formula (for DVCS), for $x \to \xi$:

$$\begin{split} &(T^q)^{\mathrm{res}} = \left(\frac{e_q^2}{x - \xi + i\epsilon} \left\{ \cosh\left[D\log\left(\frac{\xi - x}{2\xi} - i\epsilon\right)\right] \right. \\ &\left. - \frac{D^2}{2} \left[9 + 3\frac{\xi - x}{x + \xi}\log\left(\frac{\xi - x}{2\xi} - i\epsilon\right)\right] \right\} \\ &\left. + C_{coll}^q \log\frac{Q^2}{\mu_F^2}\right) - (x \to -x) \quad \text{with} \quad D = \sqrt{\frac{\alpha_s C_F}{2\pi}} \end{split}$$

T. Altinoluk, B. Pire, L. Szymanowski, S. W.

JHEP 1210 (2012) 49; [arXiv:1206.3115]

- Our analysis can be used for the gluon coefficient function [In progress].
- The measurement of the phenomenological impact of this procedure on the data analysis needs further analysis with the implementation of modeled generalized parton distributions [backup].

Problems

ho-electroproduction: Selection rules and factorization status

- chirality = helicity for a particule, chirality = -helicity for an antiparticule
- for massless quarks: QED and QCD vertices = chiral even (no chirality flip during the interaction)
 - \Rightarrow the total helicity of a $q\bar{q}$ produced by a γ^* should be 0
 - \Rightarrow helicity of the $\gamma^* = L_z^{qar q}$ (z projection of the qar q angular momentum)
- ullet in the pure collinear limit (i.e. twist 2), $L_z^{qar q}$ = 0 $\Rightarrow \gamma_L^*$
- ullet at t=0, no source of orbital momentum from the proton coupling \Rightarrow helicity of the meson = helicity of the photon
- in the collinear factorization approach, $t \neq 0$ change nothing from the hard side \Rightarrow the above selection rule remains true
- ullet thus: 2 transitions possible (s-channel helicity conservation (SCHC)):
 - $\gamma_L^* \to \rho_L$ transition: QCD factorization holds at t=2 at any order in perturbation (i.e. LL, NLL, etc...)

Collins, Frankfurt, Strikman '97 Radyushkin '97

 \bullet $\gamma_T^* \to \rho_T$ transition: QCD factorization has problems at t=3

Mankiewicz-Piller '00

$$\int\limits_0^1 {\frac{{du}}{u}}$$
 or $\int\limits_0^1 {\frac{{du}}{{1 - u}}}$ diverge (end-point singularity)

ho-electroproduction: Selection rules and factorization status

Improved collinear approximation: a solution?

- \bullet keep a transverse ℓ_\perp dependency in the $q,\,\bar q$ momenta, used to regulate end-point singularities
- soft and collinear gluon exchange between the valence quark are responsible for large double-logarithmic effects which are conjectured to exponentiate
- ullet this is made easier when using the impact parameter space b_\perp conjugated to $\ell_\perp \Rightarrow {\sf Sudakov}$ factor

$$\exp[-S(u, b, Q)]$$

- S diverges when $b_{\perp} \sim O(1/\Lambda_{QCD})$ (large transverse separation, i.e. small transverse momenta) or $u \sim O(\Lambda_{QCD}/Q)$ Botts, Sterman '89 \Rightarrow regularization of end-point singularities for $\pi \to \pi \gamma^*$ and $\gamma \gamma^* \pi^0$ form factors, based on the factorization approach Li, Sterman '92
- it has been proposed to combine this perturbative resummation tail effect with an ad-hoc non-perturbative gaussian ansatz for the DAs

$$\exp[-a^2 |k_{\perp}^2|/(u\bar{u})]$$

which gives back the usual asymptotic DA $6u\bar{u}$ when integrating over k_{\perp} \Rightarrow practical tools for meson electroproduction phenomenology Goloskokov, Kroll '05

Introduction

A particular regime for QCD:

The perturbative Regge limit $s \to \infty$

Consider the diffusion of two hadrons h_1 and h_2 :

- \sqrt{s} (= $E_1 + E_2$ in the center-of-mass system) \gg other scales (masses, transfered momenta, ...) eg $x_B \to 0$ in DIS
- ullet other scales comparable (virtualities, etc...) $\gg \Lambda_{QCD}$

regime $\alpha_s \, \ln s \sim 1 \Longrightarrow$ dominant sub-series:

with $lpha_{\mathbb{P}}(0)-1=C\,lpha_s\;(C>0)$ hard Pomeron (Balitsky, Fadin, Kuraev, Lipatov)

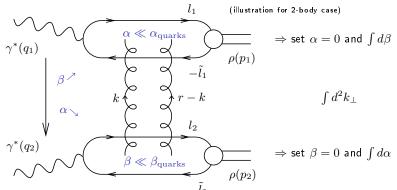
- This result violates QCD S matrix unitarity $(S S^{\dagger} = S^{\dagger} S = 1 \text{ i.e. } \sum Prob. = 1)$
- Until when this result could be applicable, and how to improve it?
- How to test this dynamics experimentally, in particular based on exclusive processes?

QCD at large s

QCD at large s k_T factorization

$$\gamma^* \, \gamma^*
ightarrow
ho \,
ho$$
 as an example

- Use Sudakov decomposition $k = \alpha p_1 + \beta p_2 + k_{\perp}$ $(p_1^2 = p_2^2 = 0, 2p_1 \cdot p_2 = s)$
- $d^4k = \frac{s}{2} d\alpha d\beta d^2k_{\perp}$ write
- t-channel gluons with non-sense polarizations ($\epsilon_{NS}^{up} = \frac{2}{s} p_2$, $\epsilon_{NS}^{down} = \frac{2}{s} p_1$) dominate at large s

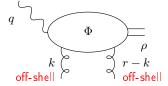


Introduction

Impact representation for exclusive processes $\underline{k} = \text{Eucl.} \leftrightarrow k_{\perp} = \text{Mink.}$

$$\mathcal{M} = is \int \frac{d^2 \underline{k}}{(2\pi)^2 \underline{k}^2 (\underline{r} - \underline{k})^2} \Phi^{\gamma^* (q_1) \to \rho(p_1^{\rho})} (\underline{k}, \underline{r} - \underline{k}) \Phi^{\gamma^* (q_2) \to \rho(p_2^{\rho})} (-\underline{k}, -\underline{r} + \underline{k})$$

 $\Phi^{\gamma^*(q_1) o
ho(p_1^{
ho})}$: $\gamma^*_{L,T}(q)g(k_1) o
ho_{L,T} g(k_2)$ impact factor



Gauge invariance of QCD:

- probes are color neutral \Rightarrow their impact factor should vanish when $k \to 0$ or $r - k \to 0$
- At twist-3 level (for the $\gamma_T^* \to \rho_T$ transition), gauge invariance is a non-trivial constraint when combining 2- and 3-body correlators

Introduction

Diffractive meson production at HERA

HERA (DESY, Hambourg): first and single $e^{\pm}p$ collider (1992-2007)

- The "easy" case (from factorization point of view): J/Ψ production ($u\sim 1/2$: non-relativistic limit for bound state) combined with k_T -factorisation Ryskin '93; Frankfurt, Koepf, Strikman '98; Ivanov, Kirschner, Schäfer, Szymanowski '00; Motyka, Enberg, Poludniowski '02
- Exclusive vector meson photoproduction at large t (= hard scale):

$$\gamma(q) + P \rightarrow \rho_{L,T}(p_1) + P$$

based on k_T -factorization:

Forshaw, Ryskin '95; Bartels, Forshaw, Lotter, Wüsthoff '96; Forshaw, Motyka, Enberg, Poludniowski '03

- H1, ZEUS data seems to favor BFKL
- ullet but end-point singularities for ho_T are regularized with a quark mass: $m=m_o/2$
- the spin density matrix is badly described
- Exclusive electroproduction of vector meson $\gamma_{L,T}^*(q) + P \to \rho_{L,T}(p_1) + P$
 - phenomenological approach based on improved collinear factorization for the coupling with the meson DA and collinear factorization for GPD coupling Goloskokov, Kroll '05
 - first principle approach based on k_T -factorisation combined with Light-Cone-Collinear-Factorisation beyond leading twist: see talk of A. Besse

Phenomenological applications: exclusive processes at Tevatron, RHIC, LHC, ILC

Exclusive $\gamma^{(*)}\gamma^{(*)}$ processes = gold place for testing QCD at large s

Proposals in order to test perturbative QCD in the large s limit (t-structure of the hard \mathbb{P} omeron, saturation, \mathbb{O} dderon...)

- ullet $\gamma^{(*)}(q) + \gamma^{(*)}(q') o J/\Psi \, J/\Psi$ Kwiecinski, Motyka '98
- $\gamma_{L,T}^*(q) + \gamma_{L,T}^*(q') \to \rho_L(p_1) + \rho_L(p_2)$ process in $e^+e^- \to e^+e^-\rho_L(p_1) + \rho_L(p_2)$ with double tagged lepton at ILC

Pire, Szymanowski, S. W. '04; Pire, Szymanowski, Enberg, S. W. '06; Ivanov, Papa '06; Segond, Szymanowski, S. W. '07

conclusion: feasible at ILC (high energy and high luminosity); BFKL NLL enhancement with respect to Born and DGLAP contributions

- What about the Odderon? C-parity of Odderon = -1 consider $\gamma + \gamma \to \pi^+\pi^-\pi^+\pi^-$: $\pi^+\pi^-$ pair has no fixed C-parity
 - ⇒ Odderon and Pomeron can interfere
 - ⇒ Odderon appears linearly in the charge asymmetry

Pire, Schwennsen, Szymanowski, S. W. '07

= example of possibilities offered by ultraperipheral exclusive processes at LHC [backup]

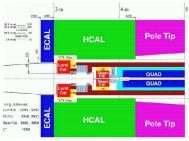
 $(p, \bar{p} \text{ or } A \text{ as effective sources of photon})$

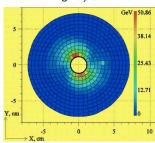
but the distinction with pure QCD processes (with gluons intead of a photon) is tricky...

Introduction

An example of realistic exclusive test of Pomeron: $\gamma^{(*)}\gamma^{(*)} o \rho \, \rho$ as a subprocess of $e^-e^+ \rightarrow e^-e^+ \rho_L^0 \rho_L^0$

- ILC should provide $\begin{cases} \text{very large } \sqrt{s} \ (= 500 \text{ GeV}) \\ \text{very large luminosity } (\simeq 125 \text{ fb}^{-1}/\text{year}) \end{cases}$
- detectors are planned to cover the very forward region, close from the beampipe (directions of out-going e^+ and e^- at large s)





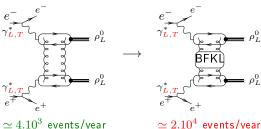
good efficiency of tagging for outgoing e^{\pm} for $E_e > 100$ GeV and $\theta > 4$ mrad (illustration for LDC concept)

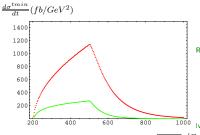
• could be equivalently done at LHC based on the AFP project

QCD at large sPhenomenological applications: exclusive test of Pomeron

Introduction

QCD effects in the Regge limit on $\gamma^{(*)}\gamma^{(*)} ightarrow ho\, ho$





proof of feasibility: B. Pire. L. Szymanowski and S. W. Eur.Phys.J.C44 (2005) 545

proof of visible BFKL enhancement: R. Enberg, B. Pire, L. Szymanowski and S. W. Eur.Phys.J.C45 (2006) 759

comprensive study of γ^* polarization effects and event rates:

M. Segond, L. Szymanowski and S. W. Eur. Phys. J. C 52 (2007) 93

NLO BFKL study: Ivanov, Papa '06 '07; Caporale, Papa, Vera '08

Conclusion

Introduction

- Since a decade, there have been much progress in the understanding of hard exclusive processes
 - at medium energies, there is now a conceptual framework starting from first principle, allowing to describe a huge number of processes
 - at high energy, the impact representation is a powerful tool for describing exclusive processes in diffractive experiments; they are and will be essential for studying QCD in the hard Regge limit (Pomeron, Odderon, saturation...)
- Still, some problems remain:
 - proofs of factorization have been obtained only for very few processes (ex.: $\gamma^* p \to \gamma p$, $\gamma_1^* p \to \rho_L p$)
 - for some other processes factorization is highly plausible, but not fully demonstrated at any order (ex.: processes involving GDAs and TDAs)
 - some processes explicitly show sign of breaking of factorization (ex.: $\gamma_T^* p \to \rho_T p$ which has end-point singularities at Leading Order)
 - models and results from the lattice or from AdS/QCD for the non-perturbative correlators entering GPDs, DAs, GDAs, TDAs are needed, even at a qualitative level!
 - QCD evolution, NLO corrections, choice of renormalization/factorization scale, power corrections, threshold resummations will be very relevant to interpret and describe the forecoming data
- Constructing a consistent framework including GPDs (skewness) and TMDs/uPDFs (k_T -dependency) with realistic experimental observables is an (almost) open problem (GTMDs)
- Links between theoretical and experimental communities are very fruitful!

Production of an exotic hybrid meson in hard processes

Distribution amplitude and quantum numbers: C-parity

ullet Define the H DA as (for long. pol.)

$$\langle H(p,0)|\bar{\psi}(-z/2)\gamma_{\mu}[-z/2;z/2]\psi(z/2)|0\rangle_{\begin{subarray}{c} z^2=0\\ z+=0\\ z_{\perp}=0\end{subarray}}=if_{H}M_{H}e_{\mu}^{(0)}\int\limits_{0}^{1}dy\,e^{i(\bar{y}-y)p\cdot z/2}\phi_{L}^{H}(y)$$

Expansion in terms of local operators

$$\langle H(p,\lambda)|\bar{\psi}(-z/2)\gamma_{\mu}[-z/2;z/2]\psi(z/2)|0\rangle = \sum_{n} \frac{1}{n!} z_{\mu_{1}}...z_{\mu_{n}} \langle H(p,\lambda)|\bar{\psi}(0)\gamma_{\mu} \stackrel{\leftrightarrow}{D}_{\mu_{1}} ... \stackrel{\leftrightarrow}{D}_{\mu_{n}} \psi(0)|0\rangle,$$

 $\bullet \ \ \, C{\rm -parity:} \ \, \left\{ \begin{array}{ll} H \ \, {\rm selects} \ \, {\rm the} \ \, {\rm odd\text{-}terms:} & C_H = (-) \\ \rho \ \, {\rm selects} \ \, {\rm even\text{-}terms:} & C_\rho = (-) \end{array} \right.$

$$\langle H(p,\lambda)|\bar{\psi}(-z/2)\gamma_{\mu}[-z/2;z/2]\psi(z/2)|0\rangle = \sum_{n,\nu} \frac{1}{n!} z_{\mu_{1}}...z_{\mu_{n}} \langle H(p,\lambda)|\bar{\psi}(0)\gamma_{\mu} \stackrel{\leftrightarrow}{D}_{\mu_{1}} ... \stackrel{\leftrightarrow}{D}_{\mu_{n}} \psi(0)|0\rangle$$

• Special case
$$n=1$$
: $\mathcal{R}_{\mu\nu} = \; \mathsf{S}_{(\mu\nu)} \bar{\psi}(0) \gamma_{\mu} \stackrel{\leftrightarrow}{D}_{\nu} \psi(0)$

$$S_{(\mu\nu)}=$$
 symmetrization operator: $S_{(\mu\nu)}T_{\mu\nu}=\frac{1}{2}(T_{\mu\nu}+T_{\nu\mu})$

A few applications Electroproduction of an exotic hybrid meson

Non perturbative imput for the hybrid DA

- We need to fix f_H (the analogue of f_ρ)
- This is a non-perturbative imput
- Lattice does not yet give information
- The operator $\mathcal{R}_{\mu\nu}$ is related to quark energy-momentum tensor $\Theta_{\mu\nu}$:

$$\mathcal{R}_{\mu\nu} = -i\,\Theta_{\mu\nu}$$

ullet Rely on QCD sum rules: resonance for Mpprox 1.4 GeV I. I. Balitsky, D. Diakonov, and A. V. Yung

$$f_H \approx 50 \,\mathrm{MeV}$$

$$f_{\rho} = 216 \, \text{MeV}$$

ullet Note: f_H evolves according to the γ_{QQ} anomalous dimension

$$f_H(Q^2) = f_H \left(\frac{\alpha_S(Q^2)}{\alpha_S(M_H^2)} \right)^{K_1} \quad K_1 = \frac{2 \gamma_{QQ}(1)}{\beta_0} ,$$

A few applications Electroproduction of an exotic hybrid meson

Counting rates for H versus ρ electroproduction: order of magnitude

Ratio:

$$\frac{d\sigma^{H}(Q^{2}, x_{B}, t)}{d\sigma^{\rho}(Q^{2}, x_{B}, t)} = \left| \frac{f_{H}}{f_{\rho}} \frac{\left(e_{u} \mathcal{H}_{uu}^{-} - e_{d} \mathcal{H}_{dd}^{-}\right) \mathcal{V}^{(H, -)}}{\left(e_{u} \mathcal{H}_{uu}^{+} - e_{d} \mathcal{H}_{dd}^{+}\right) \mathcal{V}^{(\rho, +)}} \right|^{2}$$

- Rough estimate:
 - neglect ar q i.e. $x\in [0,1]$ $\Rightarrow Im \mathcal A_H$ and $Im \mathcal A_{
 ho}$ are equal up to the factor $\mathcal V^M$
 - ullet Neglect the effect of $Re\mathcal{A}$

$$\frac{d\sigma^{H}(Q^{2}, x_{B}, t)}{d\sigma^{\rho}(Q^{2}, x_{B}, t)} \approx \left(\frac{5f_{H}}{3f_{\rho}}\right)^{2} \approx 0.15$$

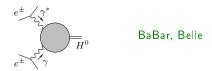
- More precise study based on *Double Distributions* to model GPDs + effects of varying μ_R : order of magnitude unchanged
- The range around 1400 MeV is dominated by the $a_2(1329)(2^{++})$ resonance
 - ullet possible interference between H and a_2
 - identification through the $\pi\eta$ GDA, main decay mode for the $\pi_1(1400)$ candidate, through angular asymmetry in θ_π in the $\pi\eta$ cms

A few applications

Electroproduction of an exotic hybrid meson

Hybrid meson production in e^+e^- colliders

 \bullet Hybrid can be copiously produced in $\gamma^*\gamma$, i.e. at e^+e^- colliders with one tagged out-going electron



• This can be described in a hard factorization framework:

$$H = H \otimes + \otimes DA_{H^0}$$
with
$$H \otimes = X^*$$

$$Y^* + X \otimes DA_{H^0}$$

A few applications Electroproduction of an exotic hybrid meson

Counting rates for H^0 versus π^0

• Factorization gives:

$$\mathcal{A}^{\gamma\gamma^* \to H^0}(\gamma\gamma^* \to H_L) = (\epsilon_{\gamma} \cdot \epsilon_{\gamma}^*) \frac{(e_u^2 - e_d^2) f_H}{2\sqrt{2}} \int_0^1 dz \, \Phi^H(z) \left(\frac{1}{\overline{z}} - \frac{1}{z}\right)$$

• Ratio H^0 versus π^0 :

$$\frac{d\sigma^H}{d\sigma^{\pi^0}} = \left| \frac{f_H \int\limits_0^1 dz \, \Phi^H(z) \left(\frac{1}{z} - \frac{1}{\bar{z}}\right)}{f_\pi \int\limits_0^1 dz \, \Phi^\pi(z) \left(\frac{1}{z} + \frac{1}{\bar{z}}\right)} \right|^2$$

• This gives, with asymptotical DAs (i.e. limit $Q^2 \to \infty$):

$$\frac{d\sigma^H}{d\sigma^{\pi^0}} \approx 38\%$$

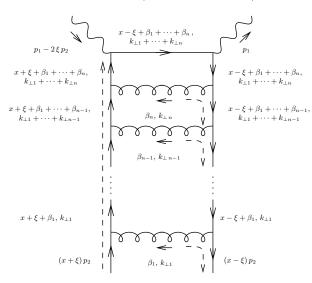
still larger than 20% at $Q^2\approx 1~{\rm GeV}^2$ (including kinematical twist-3 effects à la Wandzura-Wilczek for the H^0 DA) and similarly

$$\frac{d\sigma^H}{d\sigma^n} \approx 46\%$$

Threshold effects for DVCS and TCS

Resummation for Coefficient functions (1)

Computation of the n-loop ladder-like diagram



- All gluons are assumed to be on mass shell.
- Strong ordering in \underline{k}_i , α_i and β_i .
- ullet The dominant momentum flows along p_2 are indicated

Threshold effects for DVCS and TCS Resummation for Coefficient functions

Computation of the n-loop ladder-like diagram (2)

Strong ordering is given as:

$$\begin{aligned} & |\underline{k}_n| \gg |\underline{k}_{n-1}| \gg \cdots \gg |\underline{k}_1| &, & 1 \gg |\alpha_n| \gg |\alpha_{n-1}| \gg \cdots \gg |\alpha_1| \\ & x \sim \xi \gg |\beta_1| \sim |x - \xi| \gg |x - \xi + \beta_1| \sim |\beta_2| \gg \cdots \gg |x - \xi + \beta_1 + \beta_2 - \cdots + \beta_{n-1}| \sim |\beta_n| \end{aligned}$$

- eikonal coupling on the left
- coupling on the right goes beyond eikonal
- Integral for n-loop:

$$I_n = \left(\frac{s}{2}\right)^n \int d\alpha_1 \, d\beta_1 \, d\underline{k}_1 \cdots \int d\alpha_n \, d\beta_n \, d\underline{k}_n \, (\text{Num})_n \frac{1}{L_1^2} \cdots \frac{1}{L_n^2} \frac{1}{S^2} \frac{1}{R_1^2} \cdots \frac{1}{R_n^2} \frac{1}{k_1^2} \cdots \frac{1}{k_n^2}$$

Numerator:

$$(\mathrm{Num})_2 = -4s\underbrace{\frac{-2\underline{k}_1^2\left(x+\xi\right)}{\beta_1}\left[1+\frac{2(x-\xi)}{\beta_1}\right]}_{\mbox{gluon 1}}\underbrace{\frac{-2\underline{k}_2^2\left(x+\xi\right)}{\beta_2}\left[1+\frac{2(\beta_1+x-\xi)}{\beta_2}\right]}_{\mbox{gluon 2}}\cdots\underbrace{\frac{-2\underline{k}_n^2\left(x+\xi\right)}{\beta_n}\left[1+\frac{2(\beta_{n-1}+\dots+\beta_1+x-\xi)}{\beta_n}\right]}_{\mbox{gluon n}}$$

Propagators:

$$\begin{split} L_1^2 &= \alpha_1(x+\xi)s\;, \qquad R_1^2 = -\underline{k}_1^2 + \alpha_1(\beta_1 + x - \xi)s\;, \\ L_2^2 &= \alpha_2(x+\xi)s\;, \qquad R_2^2 = -\underline{k}_2^2 + \alpha_2(\beta_1 + \beta_2 + x - \xi)s\;, \\ &\vdots \\ L_n^2 &= \alpha_n(x+\xi)s\;, \qquad R_n^2 = -\underline{k}_n^2 + \alpha_n(\beta_1 + \dots + \beta_n + x - \xi)s\;, \end{split}$$

Resummation for Coefficient functions

Computation of the n-loop ladder-like diagram (3)

$$I_{n} = -4 \frac{(2\pi i)^{n}}{x - \xi} \int_{0}^{\xi - x} d\beta_{1} \cdots \int_{0}^{\xi - x - \beta_{1} - \dots - \beta_{n-1}} d\beta_{n} \frac{1}{\beta_{1} + x - \xi} \cdots \frac{1}{\beta_{1} + \dots + \beta_{n} + x - \xi} \times \int_{0}^{\infty} dN_{n} \underline{k}_{n} \cdots \int_{\underline{k}_{2}^{2}} dN_{n} \underline{k}_{1} \frac{1}{\underline{k}_{1}^{2}} \cdots \frac{1}{\underline{k}_{n-1}^{2}} \frac{1}{\underline{k}_{n}^{2} - (\beta_{1} + \dots + \beta_{n} + x - \xi)s}$$

integration over \underline{k}_i and β_i leads to our final result :

remember that $K_n = -\frac{1}{4}e_q^2\left(-i\,C_F\,\alpha_s\frac{1}{(2\pi)^2}\right)^{\prime\prime}I_n$

$$I_n^{\text{fin.}} = -4 \frac{(2\pi i)^n}{x - \xi + i\epsilon} \frac{1}{(2n)!} \log^{2n} \left[\frac{\xi - x}{2\xi} - i\epsilon \right]$$

Resummation:

 $\left(\sum_{n=0}^{\infty} K_n\right) - (x \to -x) = \frac{e_q^2}{x - \xi + i\epsilon} \cosh\left[D\log\left(\frac{\xi - x}{2\xi} - i\epsilon\right)\right] - (x \to -x)$

where
$$D = \sqrt{\frac{\alpha_s C_F}{2\pi}}$$

Threshold effects for DVCS as Resummed formula

Inclusion of our resummed formula into the NLO coefficient function

The inclusion procedure is not unique and it is natural to propose two choices:

ullet modifying only the Born term and the \log^2 part of the C_1^q and keeping the rest of the terms untouched :

$$(T^q)^{\text{res1}} = \left(\frac{e_q^2}{x - \xi + i\epsilon} \left\{ \cosh\left[D\log\left(\frac{\xi - x}{2\xi} - i\epsilon\right)\right] - \frac{D^2}{2} \left[9 + 3\frac{\xi - x}{x + \xi}\log\left(\frac{\xi - x}{2\xi} - i\epsilon\right)\right] \right\} + C_{coll}^q \log\frac{Q^2}{\mu_F^2} - (x \to -x)$$

ullet the resummation effects are accounted for in a multiplicative way for C_0^q and C_1^q :

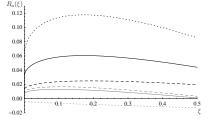
$$\begin{split} (T^q)^{\mathrm{res2}} &= \left(\frac{e_q^2}{x - \xi + i\epsilon} \cosh\left[D\log\left(\frac{\xi - x}{2\xi} - i\epsilon\right)\right] \left[1 - \frac{D^2}{2} \left\{9 + 3\frac{\xi - x}{x + \xi}\log\left(\frac{\xi - x}{2\xi} - i\epsilon\right)\right\}\right] \\ &\quad + C_{coll}^q \log\frac{Q^2}{\mu_F^2}\right) - (x \to -x) \end{split}$$

These resummed formulas differ through logarithmic contributions which are beyond the precision of our study.

Threshold effects for DVCS and TCS Phenomenological implications

- We use a Double Distribution based model
 S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 50, 829 (2007)
- ullet Blind integral in the whole x-range: amplitude = NLO result $\pm~1\%$
- To respect the domain of applicability of our resummation procedure:
 - restrict the use of our formula to $\xi a\gamma < |x| < \xi + a\gamma$
 - width $a\gamma$ defined through $|D\log(\gamma/(2\xi))|=1$
 - ullet theoretical uncertainty evaluated by varying a
 - a more precise treatment is beyond the leading logarithmic approximation

$$R_a(\xi) = \frac{\left[\int_{\xi - a\gamma}^{\xi + a\gamma} + \int_{-\xi - a\gamma}^{-\xi + a\gamma} \right] dx (C^{\text{res}} - C_0 - C_1) H(x, \xi, 0)}{\left| \int_{-1}^{1} dx \left(C_0 + C_1 \right) H(x, \xi, 0) \right|}.$$



 $Re[R_a(\xi)]$: black upper curves $Im[R_a(\xi)]$: grey lower curves

$$a=1$$
 (solid)

$$a = 1/2$$
 (dotted)

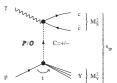
$$a=2$$
 (dashed)

Finding the hard Odderon

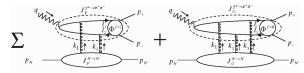
- colorless gluonic exchange
 - ullet C=+1: Pomeron, in pQCD described by BFKL equation
 - \bullet C=-1 : $\mathbb O \mathrm{dderon},$ in pQCD described by BJKP equation
- ullet best but still weak evidence for $\mathbb O\colon pp$ and par p data at ISR
- ullet no evidence for perturbative ${\mathbb O}$

Finding the hard Odderon

- $\mathbb O$ exchange much weaker than $\mathbb P\Rightarrow$ two strategies in QCD
 - consider processes, where $\mathbb P$ vanishes due to C-parity conservation: exclusive $\eta,\eta_c,f_2,a_2,...$ in $ep;\;\gamma\gamma\to\eta_c\eta_c\sim|\mathcal M_{\mathbb O}|^2$ Braunewell, Ewerz '04 exclusive $J/\Psi,\Upsilon$ in pp ($\mathbb P\mathbb O$ fusion, not $\mathbb P\mathbb P$)) Bzdak, Motyka, Szymanowski, Cudell '07
 - consider observables sensitive to the interference between $\mathbb P$ and $\mathbb O$ (open charm in ep; $\pi^+\pi^-$ in ep) $\sim \mathrm{Re}\,\mathcal M_{\mathbb P}\mathcal M_{\mathbb O}^* \Rightarrow$ observable linear in $\mathcal M_{\mathbb O}$



Brodsky, Rathsman, Merino '99

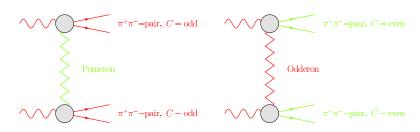


Ivanov, Nikolaev, Ginzburg '01 in photo-production Hägler, Pire, Szymanowski, Teryaev '02 in electro-production

Finding the hard Odderon

$\mathbb{P} - \mathbb{O}$ interference in double UPC

 $\mathbb{P} - \mathbb{O}$ interference in $\gamma \gamma \to \pi^+ \, \pi^- \, \pi^+ \, \pi^-$



Hard scale = t

 $B.\ \mathsf{Pire},\ \mathsf{F}.\ \mathsf{Schwennsen},\ \mathsf{L}.\ \mathsf{Szymanowski},\ \mathsf{S}.\ \mathsf{W}.$

Phys.Rev.D78:094009 (2008)

pb at LHC: pile-up!