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selected statistics topics

Aart Heijboer, Nikhef Amsterdam

» Searches
e common aspects — observable

 Discovery
e Limits

L S « from counting to continuous

e problems with 'Neyman' limits

- « alternatives (PC, CLs, FC)
OUtI ine * Nuisance parameters and external constraints

|

Aart Heijboer - EPNT2013 2




Introduction: searches

Common element: some observable which distinguishes signal from background

 number of events after cuts

« result of some multivariate method. BDT, NN, etc, or likelihood ratio Q

_ L5t"  P(datals+b)  P(data|H;)

©= L£b  P(datalb)  P(datalHy)

end up with distributions of the test statistic
(from MC) and one observed value (from data)

bg + sig

bg only

* test statistic Q
(zobs
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Events

BDT, NN etc produce per-event output —
cut and count or likelihood ratio from output

P(data|H) = > P(N;|H)
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Introduction: searches

Common element: some observable (a.ka. test-statistic) which
distinguishes signal from background

* number of events after cuts

* result of some multivariate method. BDT, NN, etc, or likelihood ratio Q

s+b
Q = - — = P(datals + b) — P(datalH) L = expectation value of the
L P(datalb) P(data|Hy) signal size, here expressed in
number of events.
end up with distributions of the test statistic
(from MC) and one observed value (from data) ucan be predicted by some theory

bg only bg + sig ‘
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T Q test statistic Q 10°
obs
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realistic version, produced by doing

pseudo-experiments
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pseudo-experiments

« To compute distribution of the observable (for bg-only and bg+sig hypotheses)
do the full analysis, on 'toy' simulation on the dataset
* not needed for counting experiment, but pretty much only solution for complex
observables.

« Can sometimes find clever way to make independent toys (out of data), by
randomizing or scrambling some key variable (eg.: randomize ra in pnt source search)

e Easy to conclude systematics : just vary the toys withing the syst. uncertainty.
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making a discovery

bg only

p-value

/
te

only minor problems:

obs

» deal with trial-factors / look-elsewhere effect
« can get philosophical < just describe

what was done.

« once you decide what you want, it's easy with

pseudo-experiments

* 50 means running > 108 pseudo-experiments
 usually not possible — extrapolate
« math available: Wilk's theorem
« would love to have that problem!
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« significance quantified by p-value
e translates into “number of sigma's”

(single or double
« Need to compute

sided convention)

P(Q,pe)
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limit setting

 surprisingly hard:
 choices involved that matter for the numbers
different limit setting method can change result by factor 2
 possibility of nonsense results
e statisticians do not agree which method to use (let alone physicists)

* not the end of the world, but good to be aware of some of the

Issues, especially when comparing experiments or using external
data as input.
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(supposing 90% CL everywhere)

limit setting : coverage

the probability to get the data we got, or even
less signal-like data, is very small if the signal would be so-and-so large.

this is what we would like (coverage):

P( ’Ii}nit(data) >u)=0.10

limit = random number 1 = a non-random, fixed number
(because function of the data) (of which we don't know the value)

- This does not tell you what to do; i.e. how to define the function limit(data)
- Even with perfect coverage, one can still get 'undesired' results (examples follow)

- Talk only about frequentist limits
Bayesian: compute PDF( u| data, prior ) and integrate to 10%
— free of all the problems | will discuss next, still not prevalent (have to choose prior)
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'Neyman' limits + assume 90% CL everywhere

PIONY" bg + sig(u)

? test statistic Q
Qobs

- Find the signal strength (u) for which P(Q_, 1) = 10*%

- Note the bg-only distribution is not used (!)
- P(Q,,.In) is also called CL _,

- 'Neyman limits' is not the prefered nomenclature, since this is only
one example of a Neyman construction. can also call them CL_, -limits.
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Example: counting experiment

P ( N(u) < Nobs|p) = 10%

e Outcome of the experiment is discrete

« All experiments with a given N__ _ must

produce the same limit
— exact coverage not possible and
forced to be conservative (< sign)

* In low-background regime, the lowest
possible limit is 2.3 signal events.

 (Severe) over-coverage
 can live with that, but keep in mind
if competing analysis does a lot better

picture changes dramatically when using
continuous variable
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For small expected background
(pink elephant search)
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Example: counting experiment
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lllustration: 'Smeared counting experiment'

ANTARES-PHYS-2009-008

/\ = j\’T{_)])S e Random number
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P ( N(n) < Nobs|p) = 10%
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P (A1) < Aobs|t) = 10%
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lllustration: 'Smeared counting experiment'

ANTARES-PHYS-2009-008

/\ = j\’T{_)])S e Random number
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lllustration: 'Smeared counting experiment'

@ sensitivity (=expected limit) gets better by just using a
continuous observable.
@ up to 40% better, without adding information

@ Gain comes from eliminating over-coverage of limits in
case of discrete observable

@ This can be (partially) why unbinned methods
give better (expected) limits than binned

@ Coverage is now exactly the stated 90% (for all u)

@ However: “Neyman” limits for a continuous observable, in
the small background-regime, have a serious defect:
sometimes the excluded value of u is zero!

@ Fine for hardcore frequentist: it only happens in <10 % of
the cases and so the limit still exceeds the true value
at 90% CL

@ However, not considered a satisfactory answer in a search

Aart Heijboer - EPNT2013
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Excluding a flux of zero

from CLs paper

bounded. When an experimental result appears consistent with little or no signal together with a down-

ard fluctuation of the background, the exclusion may be so strong that even zero signal is excluded at
confidence levels higher than 95%. Although a perfectly valid result from a statistical point of view, it
tends to say more about the probability of observing a similar or stronger exclusion in future experiments
with the same expected signal and background than about the non-existence of the signal itself, and it is
the latter which is of more interest to the physicist. Presumably a great deal of effort has already gone

from PDG

probability to obtain a lower CLg value) is less than «. This prevents exclusion of a
parameter value that could result from a statistical fluctuation in situations where one
has no sensitivity, e.g., at very high Higgs masses. The procedure results in a coverage
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(what to do with) BG-like experiments

point source search example bg + sig
- bg only
A . B . 1 3
Y2
y event é@q v
B / event
SK:G sﬁ:e

? test statistic Q

two schools of thought:
@ experiment A is still more signal-like that experiment
— B should have a more stringent limit
(in that case, one must use a method that at least gives 'reasonable’ limits)

@ both experiments are ~equally compatible with any signal being present
and the difference is just due to background fluctuation
— They should yield the same limit
o CL_and power-constrained limits are an implementation of this
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Power constrained “Neyman” / CL__,

a|f the observed limit is lower than some threshold, the actual
limit is reported for the threshold value. -
@The threshold is determined from the bg-only distribution

bg only bg + sig

1 sigma
+1 sigma
N 1)
—
o
]
ity 0
&
[®
s

ph.IM]

Q.,.c Q... test statistic Q

wXiv: 10064334yl [astro

nb: one can easy do something like this by accident.
... €.g by binning of Q
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Power constrained “Neyman” / CL__,

alf the ( Moriond 2011
limit ig ,
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Vused

arXiv:1006.433

nb: one can easy do something like this by accident.
... €.g by binning
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Power constrained “Neyman” / CL__,

arXiv:1105_ 3166
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nb: one can easy do something like this by accident.

... €.g by binning
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CLs Method (a.k.a. Modified Frequentist)

bg only
define:
CL.=CL_ /CL,
and require CL_(u"™") = 10%
for a 90% 'CL' limit
CL,

CL Qe

s+b

bg + sig(n)

T test statistic Q

» Only exclude values for which there is some ability to observe them

eIfu=0, CLs =1 - never exlude this

* in fact, for most bg-like outcomes give p'™=2.3 (same as counting experiment)

» Over-coverage : limits are 'worse'

 nevertheless quite widely used: LEP, Tevatron, LHC...
 easy to implement

 unpopular with statisticians : CLs is not a confidence level
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Feldman-Cousins

@ Prevents excluding zero
(by spending coverage on lower limit)

@ produces double sided interval (we don't really care)

@ Can be difficult to implement:

@ likelihood ordering requires many pseudo-experiments

to work well..

@ a transformation of the test statistic can help, but still

for Antares point sources, we chose it because:

@ |ceCube was using it

@ allows use of full range of continuous variable
without the need for additional measures
(like power-constraining or something that depends

on the binning)
@ better coverage (lower limits) than CL_

@ seems FC Is not really catching on at
LHC, and many people in our
community prefer something simpler.
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FC 90% confidence belt
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comparing all three

Neyman Feldman-Cousins
£ c T
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limit onu

e plots from 1st antares point source analysis

 Neyman has best sensitivity (dashed line), but excludes a flux of zero
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Likelihood ratio with nuisance parameters

What if the hypotheses under test have unknown (nuisance) parameters ?
e.g. for Hierarchy determination:

 P(data|NH, Ami, g0, AMZ a1 012, 013, 023) e
P(data,‘IH7 Amlzarge7 Amgmall’ 912’ 0137 623) M‘

common recipe: plug in maximum likelihood values for the x
nuisance parameters - i.e. first fit them to the data.

e
Ll
I I ] I [aER] I I Jenre

bl v i,
0 02 04 06 08 1 12 14 16 18 2

) ) ) ) log(E
What if we want to include external information?: o

log(L) = log P(data™|H, 8) + log P(data®™™|H, 6)

- adding constraints is equivalent to combining datasets

- ideally add full likelihood-grid of constraining measurement(s),
alternatively, assume log(P) is paraboloid according to published
central values and uncertainties
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Likelihood ratio with nuisance parameters

TABLE I: Results of the global 3y oscillation analysis, in terms of best-fit values and allowed 1, 2 and 3o ranges for the 3v . == 3 o
mass-mixing parameters. We remind that Am? is defined herein as m — (m3 + m3) /2, with +Am? for NH and ~Am? for TH. | fi_nh.fit_thats_13:thein_13 (trua_h==0) | | fit_nh.fit_theta_23:theta_23 {true_h==0} |
Parameter Best fit 10 range 20 range 37 range [4}] P_z - m*u [
i 107 oV* (NHor TH) 75 730780 T15-800 699818 o | I : = t 3 .
i o/10~" (NH or IH) 507 291-32 17534 250350 o L eXterna| t‘ﬂ: — d d s U
A 10° o (SH) 21 1320 22725 219202 = i - - E our data dominates
A 107 V2 (IH) 20 231249 22623 217261 — b1 i ConStraInt dom_lna_-tes ::'_'4.0:— N R
sin?B13/10°2 (NH) 241 216266 193290 169313 @ i LA - e
sin /107 (IH) 24 210 267 194201 171-315 = [ ) Lo i E_Bg
ity /10" (VH) 35 365410 345445 331637 = o8- = f
sin’ g /107 (IH) 392 3.70 - 431 353 - 484 £ 543 - 641 335 - 6.63 ha - L 35'_
b (NH) 18 077136 C -
5/ () 109 083 - 147 89— 3.‘,:_
L 361
B.E
.on - . 351
pseudo experiments are generated 0T oL "
7 TE 8/ 85 a9 a5 10 10.5 L, 1 b s 0y 0 0 b os o 0 1 | ]

with parameters varied according to generated 6 ,

inti ted 0
current uncertainties. (1) generate

23

in each PE, the nuisance parameters are
fit to the data, constraint by current
uncertainties (2)

8

toy datasets
— generated
with NH

toy datasets
generated
with NH

» Hexperiments
5

g

II|Il|I|IIII|I1IIIl|III|III

(2) is done for the two hypotheses :
NH and IH. Finally compute

0 — P(data|NH, J%H) .
P(da}ta‘IH, 9_’?}{) %0 40 -30 -20 -10 © 8 ﬁ:nn:iad‘?au:uu

Ty NIRRT anne
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Conclusions

» Every search based on some observable, who's distribution can be computed
e.g. by pseudo-experiments.

e Making discoveries is easy

e Setting limits is hard
« Be careful comparing limits based on discrete and continuus variables

- Iimprovement seen may have nothing to do with s/b separation power
of the analysis
 Neyman / CLs+b limits
« QOver-cover in counting experiment (FC improves that a bit)
» Severe problems for continuous variables (exclude zero)
« Several alternatives : power constrain, CLs, FC, Bayesian
« offer different trade-off between desired properties and 'lowness' of the limits

* Nuisance parameters (a.k.a. degeneracies)

e fit to the data
« external constraints can help and are easy to implement

Aart Heijboer - EPNT2013 25



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

