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selected statistics topics
in neutrino telescopes

Aart Heijboer, Nikhef Amsterdam 

• talk on statistics
• early in the morning
• after the conference dinner

• making discoveries (easy)
• likelihood vs chi2

• setting limits (complex)
• methods and philosophy
• discrete vs continuous observable 

• measurements (with constraints)
• Orca

would like to 
thank the
organizers
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selected statistics topics
in neutrino telescopes

Aart Heijboer, Nikhef Amsterdam 

•

outline

● Searches
● common aspects → observable

● Discovery
● Limits

● from counting to continuous 
● problems with 'Neyman' limits
● alternatives (PC, CLs, FC)

● Nuisance parameters and external constraints

not much about: reconstruction, event classification,
Bayesian methods, measuring parameters, multi-
variate methods, unfolding, ...
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Introduction: searches

 
end up with distributions of the test statistic

(from MC) and one observed value (from data)

Q
obs

test statistic Q

bg only bg + sig

Common element: some observable which distinguishes signal from  background
● number of events after cuts
● result of some multivariate method. BDT, NN, etc, or  likelihood ratio Q 

=1  =2.0

BDT, NN etc produce per-event output → 
cut and count or likelihood ratio from output



  

Aart Heijboer – EPNT2013 4

Introduction: searches

 
end up with distributions of the test statistic

(from MC) and one observed value (from data)

Q
obs

test statistic Q

bg only bg + sig

realistic version, produced by doing
pseudo-experiments

Common element: some observable (a.ka. test-statistic) which 
distinguishes signal from  background

● number of events after cuts
● result of some multivariate method. BDT, NN, etc, or  likelihood ratio Q 

 = expectation value of the
      signal size, here expressed in
      number of events.


 
can be predicted by some theory

       

=1  =2.0
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pseudo-experiments
● To compute distribution of the observable (for bg-only and bg+sig hypotheses)
  do the full analysis, on 'toy' simulation on the dataset

● not needed for counting experiment, but pretty much only solution for complex 
observables.

 
● Can sometimes find clever way to make independent toys (out of data), by
  randomizing or scrambling some key variable (eg.: randomize ra in pnt source search)

● Easy to conclude systematics : just vary the toys withing the syst. uncertainty. 
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making a discovery

only minor problems:

● deal with trial-factors / look-elsewhere effect
● can get philosophical ← just describe

what was done.
● once you decide what you want, it's easy with 

pseudo-experiments

● 5σ means running > 108 pseudo-experiments
● usually not possible → extrapolate
● math available: Wilk's theorem
● would love to have that problem!

3.5 108 pseudo-experiments

Q
obs

bg only

p-value

● significance quantified by p-value
● translates into “number of sigma's”
  (single or double sided convention)
● need to compute p(Q

obs
)
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limit setting

● surprisingly hard:
● choices involved that matter for the numbers

different limit setting method can change result by factor 2
● possibility of nonsense results
● statisticians do not agree which method to use (let alone physicists)

● not the end of the world, but good to be aware of some of the
issues, especially when comparing experiments or using external
data as input.
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limit setting : coverage
(supposing 90% CL everywhere)

this is what we would like (coverage):

P( limit(data) ≥  ) = 0.10

limit = random number
(because function of the data)

µ = a non-random, fixed number
(of which we don't know the value)

- This does not tell you what to do;  i.e. how to define the function limit(data)

- Even with perfect coverage, one can still get 'undesired' results (examples follow)

- Talk only about frequentist limits
   Bayesian: compute PDF(  data, prior ) and integrate to 10%
   → free of all the problems I will discuss next, still not prevalent (have to choose prior)
 

the probability to get the data we got, or even
less signal-like data, is very small if the signal would be so-and-so large.
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'Neyman' limits

test statistic Q

bg only bg + sig()

Q
obs



- Find the signal strength () for which P(Q
obs

|) = 10*%

- Note the bg-only distribution is not used (!)
- P(Q

obs
|) is also called CL

s+b

- 'Neyman limits' is not the prefered nomenclature, since this is only 
  one example of a Neyman construction. can also call them CL

s+b
-limits.  

* assume 90% CL everywhere
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Example: counting experiment

N
obs      

limit
0    2.30
1    3.89
2    5.32
3    6.68

co
ve

ra
ge

For small expected background
(pink elephant search)

● Outcome of the experiment is discrete

● All experiments with a given N
obs

 must
  produce the same limit
  → exact coverage not possible and 
      forced to be conservative (≤ sign)

● In low-background regime, the lowest
  possible limit is 2.3 signal events.

● (Severe) over-coverage
● can live with that, but keep in mind

if competing analysis does a lot better

picture changes dramatically when using
continuous variable
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Example: counting experiment

N
obs      

limit
0    2.30
1    3.89
2    5.32
3    6.68

co
ve

ra
ge

For small expected background
(pink elephant search)

● Outcome of the experiment is discrete

● All experiments with a given N
obs

 must
  produce the same limit
  → exact coverage not possible and 
      forced to be conservative (≤ sign)

● In low-background regime, the lowest
  possible limit is 2.3 signal events.

● (Severe) over-coverage
● can live with that, but keep in mind

if competing analysis does a lot better

picture changes dramatically when using
continuous variable
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Illustration: 'Smeared counting experiment'
ANTARES-PHYS-2009-008 

µ = 1.2

andom number
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large range of
limits for experiments
with zero (signal)
events:
from 0 to 2.3

median = 1.6

Illustration: 'Smeared counting experiment'
ANTARES-PHYS-2009-008 

andom number
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 sensitivity (=expected limit) gets better by just using a 
   continuous observable.

up to 40% better, without adding information

 Gain comes from eliminating over-coverage of limits in 
   case of discrete observable

 This can be (partially) why unbinned methods 
 give better (expected) limits than binned

 Coverage is now exactly the stated 90% (for all )

 However: “Neyman” limits for a continuous observable, in 
  the small background-regime,  have a serious defect: 
  sometimes the excluded value of  is zero!

Fine for hardcore frequentist: it only happens in <10 % of 
the cases and so the limit still exceeds the true value 
at 90% CL
However, not considered a satisfactory answer in a search

Illustration: 'Smeared counting experiment'
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test statistic Q

bg only bg + sig

Q
obs

'neyman limits' or CL
s+b 

: find the signal strength m so that
P(Q<Q

obs
 | m ) = 10 %

 produces very different limits for different background fluctuations 
   typically in the region <~1 signal event.
 If Qobs is very bg-like (in the 10% tail) → exclude even m=0

from CLs paper

from PDG

Excluding a flux of zero
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test statistic Q

bg only
bg + sig

 experiment A is still more signal-like that experiment 
 → B should have a more stringent limit

       (in that case, one must use a method that at least gives 'reasonable' limits)
 
 both experiments are ~equally compatible with any signal being present

  and the difference is just due to background fluctuation
   → They should yield the same limit 

CL
s
 and power-constrained limits are an implementation of this

A 
 

B
two schools of thought:

1 2 3

(what to do with) BG-like experiments

A B
point source search example
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Power constrained “Neyman” / CLs+b

test statistic Q

bg only bg + sig

-1
 s

ig
m

a

+
1

 s
ig

m
a

Q
obs

If the observed limit is lower than some threshold, the actual 
  limit is reported for the threshold value.
The threshold is determined from the bg-only distribution

Q
used

nb: one can easy do something like this by accident.
… e.g by binning of Q
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Power constrained “Neyman” / CLs+b

test statistic Q

bg only bg + sig

-1
 s

ig
m

a

+
1

 s
ig

m
a

Q
obs

If the observed limit is lower than some threshold, the actual 
  limit is reported for the threshold value.
The threshold is determined from the bg-only distribution

Q
used

nb: one can easy do something like this by accident.
… e.g by binning

Moriond 2011
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Power constrained “Neyman” / CLs+b

test statistic Q

bg only bg + sig

-1
 s

ig
m

a

+
1

 s
ig

m
a

Q
obs

If the observed limit is lower than some threshold, the actual 
  limit is reported for the threshold value.
The threshold is determined from the bg-only distribution

Q
used

nb: one can easy do something like this by accident.
… e.g by binning

2013
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CLs Method  (a.k.a. Modified Frequentist)

test statistic Q

bg only
bg + sig()

Q
obsCL

s+b

CL
b

define:
CL

s
 = CL

s+b
 / CL

b

and require CL
s
(limit) = 10% 

for a 90% 'CL' limit

● Only exclude values for which there is some ability to observe them
● If  = 0, CLs = 1 → never exlude this
● in fact, for most bg-like outcomes give limit=2.3 (same as counting experiment)
● Over-coverage : limits are 'worse'
● nevertheless quite widely used: LEP, Tevatron, LHC...
● easy to implement
● unpopular with statisticians : CLs is not a confidence level CERN-OPEN-2000-205
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Feldman-Cousins

 Prevents excluding zero 
  (by spending coverage on lower limit)
 produces double sided interval (we don't really care)
 Can be difficult to implement:

likelihood ordering requires many pseudo-experiments
to work well..
a transformation of the test statistic can help, but still
 

n=1 n=2

lowest possible limit
around 1 event

(not unreasonable?)

for Antares point sources, we chose it because:
 IceCube was using it 
 allows use of full range of continuous variable

   without the need for additional measures 
 (like power-constraining or something that depends

  on the binning)
 better coverage (lower limits) than CL

s

 seems FC Is not really catching on at 
   LHC, and many people in our 
   community prefer something simpler.
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comparing all three

● plots from 1st antares point source analysis
● Neyman has best sensitivity (dashed line), but excludes a flux of zero
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Likelihood ratio with nuisance parameters

What if the hypotheses under test have unknown (nuisance) parameters?
e.g. for Hierarchy determination: 

example of 1yr
of data

log(E)

co
s(

)

common recipe: plug in maximum likelihood values for the
nuisance parameters → i.e. first fit them to the data.

What if we want to include external information?:

- adding constraints is equivalent to combining datasets
- ideally add full likelihood-grid of constraining measurement(s), 
  alternatively, assume log(P) is paraboloid according to published
  central values and uncertainties
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Likelihood ratio with nuisance parameters

pseudo experiments are generated
with parameters varied according to
current uncertainties. (1)

in each PE, the nuisance parameters are
fit to the data, constraint by current 
uncertainties (2)

(2) is done for the two hypotheses : 
NH and IH. Finally compute 

external
constraint dominates our data dominates

toy datasets
generated 
with NH

toy datasets
generated 

with NH

toy datasets
generated 
with NH

toy datasets
generated 

with NH
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Conclusions

● Every search based on some observable, who's distribution can be computed
  e.g. by pseudo-experiments.

●  Making discoveries is easy

● Setting limits is hard
● Be careful comparing limits based on discrete and continuus variables

- improvement seen may have nothing to do with s/b separation power
  of the analysis

● Neyman / CLs+b limits 
● Over-cover in counting experiment (FC improves that a bit)
● Severe problems for continuous variables (exclude zero)

● Several alternatives : power constrain, CLs, FC, Bayesian
● offer different trade-off between desired properties and 'lowness' of the limits

● Nuisance parameters (a.k.a. degeneracies)
● fit to the data
● external constraints can help and are easy to implement 
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