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• Long-lived charged particles

• New neutrino interactions (TeV gravity, classicalons)

• A 50 MeV neutrino at LSND/MiniBooNE and ν telescopes
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LONG-LIVED CHARGED PARTICLES

muon range in ice: 6 km at 10 TeV; 18 km at 1000 TeV

150 GeV stau range in ice: 45 km at 10 TeV; 3000 km at 1000 TeV
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UPGOING LL STAU EVENTS

Albuquerque et al, Reno et al, Ahlers et al, Xiao-Jun et al

• Larger reach than muons. Inside the telescope τ̃ ionizes like a 100

GeV muon, but it keeps going...

• Pair produced: Two parallel traces with a 100 m separation

• Small cross section ∝ (mW/mχ)
4 with a very high kinematical

threshold
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NEAR-HORIZONTAL LL STAU EVENTS

Ahlers et al, Ando et al, Peng-fei et al

• Atmospheric LL staus produced in the collision of primary or

secondary hadrons with air nuclei. Any SUSY event (gluino or squark

production) results into a LL stau pair

• Very energetic staus (Eτ̃
>∼ 106 GeV), with a very long reach.

They could be separated from the muons inside the shower imposing a

slant depth cut

• Given the LHC results (mSUSY
>∼ 900 GeV) the usual scenarios are

disfavored, but...

HOW TO LOOK FOR A MODEL-INDEPENDENT SIGNAL?
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3000 km20 km

• High-energy (not finishing inside the detector) muon-like tracks

• Possible anomalies at slant depths between 10 and 3000 km
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NEW NEUTRINO INTERACTIONS

• Neutrinos are weakly interacting particles. The relative effect of the

new physics would be larger than on quarks or charged leptons

• At high energies their interactions with matter may become stronger

• The atmospheric neutrino flux drops (the spectral index changes from

−2.7 to −3.7) at energies E > 100 GeV. There must be a cosmic flux

related to the production and propagation of cosmic rays

• Both the observation or the absence of neutrino interations above PeV

energies have consequences on models for new physics

What kind of effects could be expected?
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Where is the New Physics? How different is it?
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Where is the New Physics? How different is it?
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Trans-Planckian collisions

• Black Hole (or classicalon) production: σqχ
BH ≈ 1
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(1 particle per m2-second)
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Could the cosmic-ray knee be caused by strong p–χ interactions?

Yes

JCAP 0807 (2008) 014, JCAP 0812 (2008) 003, JCAP 0906 (2009) 027
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Implications in UHE neutrino physics

• If DM interacts strongly with matter above the energy threshold Eknee,

then neutrinos should do the same.

• The c.o.m. energy at the knee is
√
s =

√

2mχEknee. This
√
s is

reached in ν–p collisions at

Eν =
mχ

mp

Eknee ≈ 108 GeV

• Therefore, we would not observe (cosmogenic) neutrino events of

energy E ≥ 108 GeV at neutrino telescopes.

• What kind of signal should we search in ν telescopes? Why we have

not seen these strongly interacting neutrinos in air showers?

The ν–p interaction is very soft
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• A 108 GeV neutrino would interact several times in the atmosphere

and then every 10 meters of ice, depositing around 1–10 TeV of energy

(y ≈ 10−5) in each interaction.

• Neutrino interactions of large cross section but small inelasticity. At a

telescope, similar to the muon bundle from a 1010 GeV cosmic ray, but

able to reach from even larger zenith angles.

No regular neutrinos at very high energies
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LONG-LIVED HEAVY (50 MeV) NEUTRINOS

• Homestake, GALLEX, SAGE,... IMB, Kamiokande, Super K, ... KEK,

K2K,... SNO, KamLAND,... Neutrinos have masses and mixings (!)














∆m2

12 ≈ 7.9× 10−5 eV2

∆m2
23 ≈ 2.5× 10−3 eV2

≈ ∆m2
13















sin2 θ12 ≈ 0.30

sin2 θ23 ≈ 0.50

sin2 θ13 ≈ 0.025

Is it yν HLνc or
1

Λν

HHLL ?

• Persistent anomalies in several experiments with neutrino beams from

particle accelerators. Excess of 3 events with an electron in the final

state per 1000 νµ CC-interactions. νµ → νe oscillations unconsistent

with ν-mass parameters (2 sterile neutrinos of m ≈ 1 eV?).

LSND, KARMEN, MiniBooNE, TRIUMF, T2K, NOMAD
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• LSND observed 3 events with ν̄µ → ν̄e then ν̄ep → e+n, with 2.2

MeV photon from neutron capture per 1000 νµ CC interactions

Fluxes: DAR (left) and DIF (right) π+ → µ+νµ ; µ+ → ν̄µe
+νe
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Gninenko’s 50 MeV neutrino hypothesis to explain LSND
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• Sterile νh with |Uµh|2 ≈ 10−3–10−2, νh → νγ with τh <∼ 10−8 s

• KARMEN did not confirm... νh would be above threshold there!
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• We have defined [JHEP1301(2013)106] a variation of Gninenko’s

model able to explain also MiniBooNE consistently with other neutrino

data (radiative muon capture at TRIUMF, T2K, single photon at NOMAD)
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• The decay length (λdec > R) and the helicity (+) of νh imply that

MiniBooNE excess should concentrate at low energies
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LSND: anomaly at L ≈ 30 m for E ≈ 40 MeV

MiniBooNE: anomaly at L ≈ 500 m for E ≈ 300 MeV

ν telescopes: anomaly at L ≈ 10–100 km for E ≈ 1 TeV ??
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• Contained events at ANTARES. In dashes the energy distribution of

the parent neutrino.
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• 14000 νh → γν events of energy above 500 GeV per year, versus

220 standard events (νeN → eX and νµ,eN → νµ,eX)

• At energies below 100 GeV νh does not reach the telescope, above

100 TeV its decay length becomes too large and the signal decreases.
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SUMMARY

• LL charged particles: A plot of # events versus slant depth covering

all depths could reveal massive particles or new muon sources (charm,

EM decays of unflavored mesons).

• New ν interactions: The absence of regular neutrinos at ultrahigh

energies and the appearence of unusual muon bundles at horizontal

zenith angles could imply a new regime of strong neutrino interactions.

• LL heavy neutrinos: An excess of contained events could be

correlated with the LSND and MiniBooNE anomalies. These events

would only be downgoing and quasi-horizontal, possible contaminated

by muons from the parent air shower.

20


