



## Dark matter searches with Baikal

## Sergey Demidov and <u>Olga Suvorova</u> on behalf of Baikal Collaboration

Institute for Nuclear Research of Russian Academy of Sciences



EPNT2013-Marseille

## Baikal collaboration:

- 1. Institute for Nuclear Research, Moscow, Russia.
- 2. Joint Institute for Nuclear Research, Dubna, Russia.
- 3. Irkutsk State University, Russia.
- 4. Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia.
  - Nizhny Novgorod State Technical University, Russia.
  - St.Petersburg State Marine University, Russia.
- 7. EvoLogics Gmb. Germany.

5.

6.

- 8. Kurchatov Institute, Moscow, Russia.
- 9. DESY-Zeuthen, Zeuthen, Germany





### Lake Baikal in other seasons









AT T

- Telescope installation, maintenance, upgrade and rearrangement
- Installation & test of a new equipment
- All connections are done on dry
- Fast shore cable installation (3-4 days)

- Telescope installation, maintenance, upgrade and rearrangement
- Installation & test of a new equipment
- All connections are done on dry
- Fast shore cable installation (3-4 days)

#### Strong ice cover



#### Shore cable deployment



- Telescope installation, maintenance, upgrade and rearrangement
- Installation & test of a new equipment
- All connections are done on dry
- Fast shore cable installation (3-4 days)



#### Site of Baikal Underwater Neutrino Telescope



Sketch of prototype cluster, neutrino telescope NT200+, and communication lines locations.

>250 km<sup>3</sup>



110'30'

#### Baikal Underwater Neutrino Telescope:

#### 10 MT



#### Quasar photodetector (Ø=37cm)



#### 1998 - NT200

NT 200: 8 strings (192 O M s) Height x  $\emptyset$  = 70m x 40m,  $V_{inst}$ =10<sup>5</sup>m<sup>3</sup> Effective area: 1 TeV ~2000m<sup>2</sup> Eff. shower volume: 10 TeV ~ 0.2 M ton

#### 2005 - NT200+

NT 200+ = NT 200 + 3 outer strings (192+36 OM s) Height  $x \varnothing = 210m \times 200m$ ,  $V_{inst} = 5 \times 10^6 m^3$ Eff. shower volume:  $10^4 TeV \sim 10 M$  ton

~ 3.6 km to shore, 1070 m depth



O.Suvorova

EPNT2013-Marseille

#### Gton Volume Detector in the Lake Baikal: TDR 2011

#### http://baikalweb.jinr.ru/GVD/









O.Suvorova

#### EPNT2013-Marseille

#### **Present and nearest future**



#### Skymap of visibility for Baikal Underwater Neutrino Telescopes

#### Baikal NT200,+,GVD





0.Suvorova

EPNT2013-Marseille

## Neutrino fluxes from p-A and $\chi$ - $\chi$





0.Suvorova

EPNT2013-Marseille

#### Baikal NT200: MC and Reconstruction

**NT200 soft:** I.Belolaptikov et al., Astropart.Phys. 7, 1997

**MUM code**: I.Sokalski, E.Bugaev, S.Klimushin, Phys. Rev.D64, 2001







#### Baikal NT200: 1998 – 2002 years





#### Baikal NT200: 1998 – 2002 years



## N<sup>UpL</sup> - calcul follow to FC:

G.Feldman & R.Cousins, Phys.Rev.D57:3873-3889, 1998



O.Suvorova

EPNT2013-Marseille

Muon flux detected by NT from neutrino scattering  $\nu_{\!\mu}\text{-}N$ 

Flux:  

$$I(\geq E_{th}, \cos \theta_{i}) = \frac{N(E_{th}, \cos \theta_{i})}{T \times \int S'(E_{th}, \Omega_{i}) d\Omega_{i}}$$
Eff.Area:  

$$S'(E_{th}, \Omega_{i}) = \frac{\int S(E, \Omega) \times \varepsilon (E_{th}, E, \Omega) \times \Phi_{\mu}^{\nu} (E, \Omega) dE}{\int \Phi_{\mu}^{\nu} (E, \Omega) dE}$$

#### Probability:

$$P_{j}(E_{\nu}, E_{th}) = \int_{E_{th}}^{E_{\nu}} \frac{d\sigma'(E_{\nu}, E_{\mu}')}{dE_{\mu}'} \times \left[R(E_{\mu}') - R(E_{\mu})\right] dE_{\mu}'$$



#### Baikal NT200: Effective areas for neutrinos expected from DM-DM in the Sun





O.Suvorova

EPNT2013-Marseille

#### Baikal NT200: Optimal cone toward the Sun in search for muons from DM-DM



In results, the expected signal parts within optimal cones are collected: in bb ~65%, tau-tau or WW ~ 70%



Upper limits on  $\chi - \chi$  annihilation Rate and on  $\mu$  and  $\nu$  Fluxes **μ**-Flux:  $\Phi_{\mu} = \Gamma_A \sum_{j=v} \int_{y^{\sim}}^{m_{\chi}} P_j(E_v, E_{th}) \times \frac{dF^j}{dE_v} dE_v$ v-Flux: Annihilation rate  $\frac{dF^{j}}{dE_{v}} = \frac{1}{4\pi R^{2}} \sum_{i} B_{i} \frac{d\Phi_{i}^{j}}{dE_{v}}$ Annihilation branching ratio  $\Gamma_A^{UpL} = \frac{I V^{T}}{T \varepsilon} \times \frac{T V^{T}}{T \varepsilon}$ Probability to detect muon from one  $\chi - \chi$  annihilation



O.Suvorova

EPNT2013-Marseille

#### Baikal NT200: 90% C.L. Upper limits on muon fluxes from DM-DM in the Sun





O.Suvorova

EPNT2013-Marseille

#### Baikal NT200: preliminary 90% C.L. Upper limits on muon fluxes from DM-DM in the Sun





O.Suvorova

EPNT2013-Marseille

# Baikal NT200: 90% C.L. Upper limits on $\chi\chi$ annihilation rate in the Sun





O.Suvorova

EPNT2013-Marseille

#### How to calculate Upper Limits on $\chi$ -N cross section





EPNT2013-Marseille

# Baikal NT200: Preliminary 90% Upper limits on spin-dependent DM-proton cross section $\sigma_{\chi-p}$





•A new DM analysis is presented with Baikal NT200 dataset of 1998-2002 years.

No excess is observed toward the Sun for 1038 days of L.T.

•Are shown the preliminary results of 90% Upper limits on muon flux, DM self-annihhilation rate and DM cross sections of elastic scattering off proton .



## Baikal Cold Matter:

## Thank you !



O.Suvorova

EPNT2013-Marseille

## Thank you !



O.Suvorova

EPNT2013-Marseille