

Neutrino Oscillation Measurements in the Deep Sea

Jürgen Brunner, CPPM, Marseille

Outline

- ANTARES Oscillation study
- KM3Net & ORCA
- Software tools
- Performance parameters
- Sensitivity to Mass Hierarchy

(Vacuum) Oscillation physics with Antares

The KM3NeT project

- Next generation (multi-km³) neutrino telescope in Mediterranean
- Main goal: detection of v from galactic sources (SNR)
- recent milestones
 - multi-pmt Optical Module design agreed & prototyped
 - string configuration
 - partial funding obtained
 - ~1/5 of total wishes (~50 strings)
 - must be spent soon \rightarrow 'phase 1'

phase-1:

10

- baseline plan: start construction of HE telescope with available funds
- \bullet alternative : devote 'phase-1' to Low Energy neutrinos \rightarrow ORCA

The KM3NeT project

Mutliple small pmt's (helps in photoncounting and background rejection)

KM3NeT Optical Module integrated in Antares instrumentation line. _____ (To be deployed soon)

KM3Net Readout

- Implemented through FPGA & System on chip contained in optical module
- All data to shore via ethernet link
- Time synchronisation and slow control

Deployment Strategy

ORCA Detector layout

- ✓ 50 Strings
- ✓ OM=31 3"PMTs
- ✓ 20 OM in each string
- ✓ 6 m vertical distance between OM
- ✓ 20 m average distance between strings

String number can be scaled according to financial situation Other parameters determined by deployment constaints

Simulation algorithms

New codes on testing level

Quasi-elastic, resonant and DIS

Light diffusion in water tables Full hadronic shower without light diffusion

Reconstruction algorithms

Different track fits have been tried

Likelihood fit based on time residual pdfs, several starting points (ANTARES based)

 χ^2 fit after strict selection of direct hits (ANTARES based)

Kalman filter (KM3net development)

Angular resolution

Comparable results for different algorithms Selection of "direct hits" successful very good determination of muon direction

Muon energy resolution

- Use full information
- Starting point
 - Hit selection
 - Track fit
- Muon range overconstrained:
- $E_1/GeV = (x_2 x_1)/5m$
- $E_2/GeV = (t_2 t_1)c/5m$

Muon energy resolution

Good correlation between measured and true muon energy found below 15 GeV Resolution about 30% Confirmed in combination with different track reconstruction methods

Efficiency w.r.t. Events with vertex in equipped volume Can be scaled to large volumes

Effective volume for fully contained muon tracks

 \rightarrow decrease for long tracks

40

Arxiv:1205.5254

TABLE I: Results of the	global 3ν c	oscillation a	analysis, i	in terms o	f best-fit	values and	allowed 1, 1	2 and 3σ	ranges for	the 3ν
mass-mixing parameters.	We remind	that Δm^2	is defined	l herein as	$m_3^2 - (m_3^2)$	$(\frac{2}{1} + m_2^2)/2$,	with $+\Delta m^2$	for NH a	$\mathrm{nd} - \Delta m^2$	for IH.

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5} \text{ eV}^2$ (NH or IH)	7.54	7.32 - 7.80	7.15 - 8.00	6.99 - 8.18
$\sin^2 \theta_{12}/10^{-1}$ (NH or IH)	3.07	2.91 - 3.25	2.75 - 3.42	2.59 - 3.59
$\Delta m^2/10^{-3} \text{ eV}^2$ (NH)	2.43	2.33 - 2.49	2.27 - 2.55	2.19 - 2.62
$\Delta m^2/10^{-3} \text{ eV}^2$ (IH)	2.42	2.31 - 2.49	2.26 - 2.53	2.17 - 2.61
$\sin^2 \theta_{13} / 10^{-2}$ (NH)	2.41	2.16 - 2.66	1.93 - 2.90	1.69 - 3.13
$\sin^2 \theta_{13} / 10^{-2}$ (IH)	2.44	2.19 - 2.67	1.94 - 2.91	1.7 <mark>1</mark> – 3.15
$\sin^2 \theta_{23}/10^{-1}$ (NH)	3.86	3.65 - 4.10	3.48 - 4.48	3.31 - 6.37
$\sin^2 \theta_{23}/10^{-1}$ (IH)	3.92	3.70 - 4.31	$3.53 - 4.84 \oplus 5.43 - 6.41$	3.35 - 6.63
δ/π (NH)	1.08	0.77 - 1.36		:
δ/π (IH)	1.09	0.83 - 1.47		

Used in the following, but so far we set $\delta=0$

with uncertainties

• NH/IH difference above ~13 GeV is degenerate with $\Delta m^2_{\ \ \text{large}}$

• \rightarrow can use data to constrain this parameter? • regions around 5 GeV where genuine NH/IH

difference remains

Contribution of individual uncertainty to overall effect Dominant : Δm^2_{large}

with uncertainties

Effect survives because anti-neutrino cross-section is factor ~2 smaller than neutrino cross-section.

however...

with uncertainties

with uncertainties

Toy Analysis – effect of resolutions & acceptance

A. Heijboer

Toy Analysis

1) fit mixing parameters assuming NH 2) fit mixing parameters assuming IH 3) compute $\Delta \log L = \log(L(NH)/L(IH))$

Results of parameter fit

1 Mton*year (NHtrue, NHfit)

Eres = 25%, 1-100 GeV

Mton x yr	$\sigma(\Delta m^2_{large})$ (eV ²)	$\sigma(\theta_{_{23}})$ (deg)	$\sigma(\theta_{13})$ (deg)
0(now)	8.0e-5	1.3	0.45
1	4.3e-05	0.61	0.42
5	2.3e-05	0.32	0.44
10	1.8e-05	0.22	0.39
20	1.4e-05	0.16	0.39
30	1.2e-05	0.13	0.37

Fit working well. Good sensitivity to $\Delta m^2_{large} \& \theta_{23}$!

A. Heijboer

Mass hierarchy significance

with current assumptions (which may be wrong) : non-trivial measurement.

A. Heijboer

Conclusions

- Antares neutrino telescope taking data for 5 years now
- •KM3NeT making good progress towards deploying first part of detector.
- Exciting possibility to measure the mass hierarchy, but challenging.
- New energy regime (for us) and stronger requirements on accuracy and resolution.
- Good sensitivity to Δm^2_{large} and θ_{23} before we can measure the MH.
- Studies into reconstruction etc progressing well; nevertheless critical items remain.
- Decision on "Phase 1" for KM3net later in 2013

Daya Bay II

Eres = 25%, 1-10	GeV
------------------	-----

				Mton x yr	$delta_m2_large$	$theta_23$
				0(now)	8.0e-5	1.3
Eres = 10%,	1-100 GeV			1	6.3e-05	0.72
Mton x yr	$delta_m2_large$	$theta_23$	theta_13	5	4.3e-05	0.4
0(now)	8.0e-5	1.3	0.45	10	3.3e-05	0.3
1	3.1e-05	0.56	0.44	20	2.6e-05	0.22
5	1.5e-05	0.28	0.42	30	2.1e-05	0.17
10	1.2e-05	0.2	0.37			
20	9.6e-06	0.16	0.32	E	10 100 C-V	
30	8.5e-06	0.12	0.31	$\frac{\text{Eres} = 25\%}{\text{Mton y yr}}$	dolta m2 largo	thata 23

Eres = 25%, 1-100 GeV

Mton x yr	delta_m2_large	$theta_23$	$theta_{-13}$
0(now)	8.0e-5	1.3	0.45
1	4.3e-05	0.61	0.42
5	2.3e-05	0.32	0.44
10	1.8e-05	0.22	0.39
20	1.4e-05	0.16	0.39
30	1.2e-05	0.13	0.37

Eres = 25%,	10-100 GeV		
Mton x yr	$delta_m2_large$	$theta_23$	$theta_13$
0(now)	8.0e-5	1.3	0.45
1	4.2e-05	0.87	0.47
5	2.5e-05	0.48	0.43
10	2e-05	0.35	0.45
20	1.6e-05	0.27	0.46
30	1.4e-05	0.22	0.46

Eres = 25%, 5-15 GeV

Mton x yr	$delta_m2_large$	$theta_23$	$theta_13$
0(now)	8.0e-5	1.3	0.45
1	5.8e-05	0.82	0.44
5	3.3e-05	0.5	0.45
10	2.6e-05	0.36	0.4
20	1.9e-05	0.25	0.39
30	1.7e-05	0.21	0.37

 $theta_13$

0.45

0.47

0.43

0.44

0.39

0.4

events / bin 52

Ż

Systematics

Simulation tools

4000

500F

0^C2

4

6

8

12

10

14

16 18 2 E_u/cosθ_e (GeV) No oscillations Normal hierarchy Inverted hierarchy

Without ve CC