Electron density resolution determination and systematic uncertainties in proton computed tomography (pCT)

G. Dedes^{1,2}, S. Rit², D. Dauvergne¹, N. Freud², J. Krimmer¹,

J.M. Létang², C. Ray¹, E. Testa¹

1 IPNL, Université de Lyon, F-69003 Lyon, France; Université Lyon 1 and CNRS/IN2P3, UMR 5822 F-69622, Villeurbanne, France 2 Université de Lyon, CREATIS ; CNRS UMR5220 ; Inserm U1044 ; INSA-Lyon ; Université Lyon 1; Centre Léon Bérard, France

Proton therapy – Proton CT

Reconstruction algorithm

- Proton therapy:
 - Reduced total energy deposed in the patient with respect to conventional radiotherapy
 - Finite range of the proton beam
 - Total range uncertainty margin 2.5%+1mm to 3.5%+3mm [1]
- Proton CT:
 - Could reduce range uncertainty margin when compared to x-ray CT based treatment planning
 - Could reduce imaging dose to the patient

- Testing achieved spatial resolution using a water phantom with aluminium inserts (Ø5 mm) – Ideal scanner
- Comparing distance-driven binning with standard FDK algorithms (straight path) binned at 110 cm (after the target) and at 90 cm (before the target)
- Spatial resolution quantified with the 10%-90% distance of the edge profile of each insert

- In-house developed distance-driven binning filtered backprojection (FDK) algorithm along most likely paths [2]
- Reconstruction algorithm implemented using RTK [3]
- All spatial resolution and electron density tests performed with **GATE** [4]

Electron density resolution

Electron density bias (homogeneous phantom)

- For an ideal scanner and a 250 MeV proton fan beam :
 - In a 10 cm radius water phantom 2.5% electron density resolution at the center, using 3 mGy
 - Result compatible with the 0.2 0.4 0.6 analytical formula presented by Schulte et al 19, predicting 1% resolution at about 20 mGy

Electron density bias (inhomogeneous phantom)

Using a space-independent I (mean excitation energy) in the reconstruction biases the value of the reconstructed electron density

S	simulated tissue I [eV]				
reconstruction I		Phantom Radius	Adipose Tissue [%/eV]	Water [%/eV]	Bone [%/eV]
		10cm	0.1519	0.1508	-
		7.5cm	0.1513	0.1500	-
		5cm	0.1511	0.1484	0.1431
		2.5cm	0.1542	0.1479	0.1426

Electron density shift per eV of difference between reconstruction I and tissue simulated for different materials and volumes

- The shift in the reconstructed electron density depends only on the difference between the I of the tissue and the one assumed during reconstruction
- Electron density shift due to I is independent of the position in the phantom (<0.1% relative variation in different positions)
- posteriori or using a calibration phantom.

in reconstruction. Only the electron density of water remains unbiased.

Ongoing studies

- Identification of basic detector requirements (energy resolution, spatial resolution)
 - Performing a virtual treatment planning using pCT, in order to quantify uncertainties in the proton range

[1] H. Paganetti, Phys. Med. Biol. 57 (2012) R99-R117

[2] S. Rit, Med. Phys. (2012) in press

[3] www.openrtk.org

[4] www.opengatecollaboration.org

[5] R.W. Schulte, Med. Phys. 32 (2005) 1035-1046