Electron density resolution determination and systematic uncertainties in proton computed tomography (pCT)
 G. Dedes ${ }^{1,2}$, S. Rit ${ }^{2}$, D. Dauvergne ${ }^{1}$, N. Freud ${ }^{2}$, J. Krimmer ${ }^{1}$, J.M. Létang ${ }^{2}$, C. Ray ${ }^{1}$, E. Testa ${ }^{1}$

1 IPNL, Université de Lyon, F-69003 Lyon, France; Université Lyon 1 and CNRS/IN2P3, UMR 5822 F-69622, Villeurbanne, France 2 Université de Lyon, CREATIS ; CNRS UMR5220 ; Inserm U1044 ; INSA-Lyon ; Université Lyon 1; Centre Léon Bérard, France

Proton therapy - Proton CT

- Proton therapy:

- Reduced total energy deposed in the patient with respect to conventional radiotherapy
- Finite range of the proton beam
- Total range uncertainty margin $2.5 \%+1 \mathrm{~mm}$ to $3.5 \%+3 \mathrm{~mm}{ }^{[1]}$
- Proton CT:
- Could reduce range uncertainty margin when compared to x-ray CT based treatment planning
- Could reduce imaging dose to the patient

Electron density resolution

For an ideal scanner and a 250 MeV proton fan beam

- In a 10 cm radius water phantom 2.5\% electron density resolution at the center, using 3 mGy
- Result compatible with the analytical formula presented by Schulte et al ${ }^{[5]}$, predicting 1% resolution at about 20 mGy

Electron density bias (inhomogeneous phantom)

Reconstruction algorithm

Electron density bias (homogeneous phantom)

Electron density shift per eV of differ
for different materials and volumes.

- The shift in the reconstructed electron density depends only on the difference between the I of the tissue and the one assumed during reconstruction
- Electron density shift due to I is independent of the position in the phantom ($<0.1 \%$ relative variation in different positions)
- Can be either corrected a posteriori or using a calibration phantom.

Ongoing studies

[1] H. Paganetti, Phys. Med. Biol. 57 (2012) R99-R117 [2] S. Rit, Med. Phys. (2012) in press
[3] www.opentrk.org
[4] www.opengatecollaboration.org
[5] R.W. Schulte, Med. Phys. 32 (2005) 1035-1046

- Identification of basic detector requirements (energy resolution, spatial resolution)
- Performing a virtual treatment planning using pCT, in order to quantify uncertainties in the proton range

