Proton Computed Tomography

F. Cassol

Atelier proton CT, CPPM, 14 November 2012

Contents

The Proton Computed Tomography (pCT)

- Where?
- Why?
- How?
- Conclusion

Contents

The Proton Computed Tomography (pCT)

- Where?
- Why?
- How?
- Conclusion

pCT useful in proton therapy

Advance form of radiotherapy based

on the way protons lose energy in matter

In general:

Dose outside the target volume is reduced of a factor 2-5 compared to photons Thanks to the Bragg peak:

- Tumors can be precisely irradiated
- Close sensitive tissues can be avoided

Proton therapy

Good results overall for:

- Cancers that need high doses: eye, skull base, spinal tumor
- Cases where other tissues must be preserved: pediatric tumors
- For several cases the usefulness of <u>PT is still a controversy</u>

• Several centers from the '90-'00:

Usa, Japan, Germany, France, Italy, Russia

• In France: Nice (1991) and Orsay (1991)

Centre Antoine Lacassagne Nice

F. Cassol, Atelier pCT

Centre Antoine Lacassagne Nice

F. Cassol, Atelier pCT

WHERE PARTICLE FIRST PATIENT DATE OF PATIENT TOTAL TOTAL Canada Vancouver (TRIUMF) 1995 161 Dec-11 ocular tumors only p China Wanjie (WPTC) 2004 1078 Dec-11 no patients in 2011 p Dec-11 China Lanzhou C ion 2006 159 1989 2151 Dec-11 England Clatterbridge ocular tumors only p France 4417 Dec-11 ocular tumors Nice (CAL) 1991 p Dec-11 1991 5634 4540 ocular tumors France Orsay (CPO) p 1998 1859 Dec-11 ocular tumors only Germany Berlin (HMI) p 895 Germany Munich (RPTC) 2009 Dec-11 p Germany HIT, Heidelberg C ion 2010 568 Dec-11 Germany HIT, Heidelberg 2010 94 Dec-11 p 290 ocular tumors only Italy Catania (INFN-LNS) p 2002 Dec-11 Italy C ion 2011 5 Dec-11 Pavia (CNAO) Chiba (HIMAC) C ion 1994 6569 Dec-11 Japan 11 with scanning Kashiwa (NCC) 870 Dec-11 estimated Japan p 1998 Japan Hyogo (HIBMC) 2001 3198 Dec-11 p Japan Hyogo (HIBMC) C ion 2002 1271 Dec-11 Japan Tsukuba (PMRC, 2) p 2001 2166 Dec-11 Japan Shizuoka p 2003 1175 Dec-11 2008 1378 Japan Koriyama-City p Dec-11 2010 Japan Gunma C ion 271 Dec-11 Dec-11 Japan Ibusuki (MMRI) p 2011 180 Korea Ilsan, Seoul 2007 810 Dec-11 p ocular tumors only Poland Krakow 2011 11 Dec-11 p Russia Moscow (ITEP) 1969 4300 Dec-11 estimated p Russia St. Petersburg 1975 1372 Dec-11 p 828 Russia Dubna (JINR, 2) 1999 Dec-11 p South Africa iThemba LABS 1993 521 p Dec-11 1989 1185 Dec-11 Sweden Uppsala (2) p Villigen PSI, incl OPTIS2 277 ocular tumors Switzerland 1996 1107 Dec-11 p USA, CA. UCSF - CNL 1994 1391 Dec-11 ocular tumors only p USA, CA. Loma Linda (LLUMC) 1990 16000 Dec-11 estimated p USA, IN. Bloomington (IU Health PTC) 2004 1431 Dec-11 p USA, MA. 5562 Boston (NPTC) 2001 Oct-11 p USA, TX. Houston (MD Anderson) 2006 3400 Feb-12 p USA, FL 3461 Jacksonville (UFPTI) p 2006 Dec-11 USA, OK. 2009 623 Oklahoma City (ProCure PTC) p Dec-11 USA, PA. Philadelphia Upenn) 2010 433 Dec-11 p USA, IL. **CDH Warrenville** 2010 367 Dec-11 p USA, VA. Hampton (HUPTI) p 2010 no data available 77191 Total

Patient Statistics (for the facilities in operation end of 2011):

F. Cassol, Atelier pCT

Contents

The Proton Computed Tomography (pCT)

- Where?
- Why?
 - Positioning of the patient
 - Measurement of the proton energy loss
- How?
- Conclusion

Positioning of the patient

At present the positioning of the tumor is done in with X-radiographies compared with the XCT used for the treatment planning

pCT would permit to directly 3D locate the tumor with the same beam that it would be used for the treatment

Which is the present uncertainty? How much are we going to improve?

Measurement of the proton energy loss

Proton Therapy is successful only if the p energy loss in the patient is precisely known

The beam energy is modulated in order to :

- 1. cover the tumor
- 2. save the closed critical tissue

F. Cassol, Atelier pCT

The proton energy loss (stopping power)

Protons lose most of their energy with the inelastic collisions with the outer atomic electrons (ionizations and excitations).

The **Bethe-Bloch theory** describes the proton stopping power:

At present, electron density derived from XCT

XCT measures the attenuation coefficient of X-rays which also depends from the electron density.

$$N(l) = N_0 e^{-\mu l}$$

$$\mu = \rho_e^{\gamma} \left(\sigma^{ph} + \sigma^{coh} + \sigma^{incoh} \right)$$

XCT gives HU we need the calibration :

 $HU \Longrightarrow \eta_e^{\gamma}$ $HU \Longrightarrow \eta_e$

F. Cassol, Atelier pCT

Calibration for radiotherapy from XCT

Phantoms with known materials are used to the estimate

XCT has several sources of uncertainty : (Schneider et al. PMB 41 1996)

- HU variations of 1-2% in homogenous materials
- HU variations till 3% as function of the position
- HU variation of 10% as function of the scanner
- Errors due to the approximation real tissues/substitute tissues

F. Cassol, Atelier pCT

Calibration of stopping power for pCT from HU

The Bragg peak position is predicted to only 3-4% of the proton range in tissue or less in complicated tissue-air tissues-bone interfaces

F. Cassol, Atelier pCT

Contents

The Proton Computed Tomography (pCT)

- Where?
- Why?
- How?
 - The method
 - Protons interactions, more precisely
 - Examples of pCT designs
- Conclusion

The method

Main goal of pCT : to determine the volume electron density by measuring the energy loss of protons after traversing the object

First trails in the '80

Assume a straight path L and only E_{out} , x_{in} and x_{out} measured

Figure 1. Schematic layout of apparatus.

Hanson et al. MPB 27 (1982)

Human heart

XCT

Results are deceiving with respect to XCT, loss of interest for pCT

But more and more proton therapy centers, in the 90' people try to do better ...

F. Cassol, Atelier pCT

pCT, more precisely

In pCT, proton energy sufficient to traverse the body

- 200 MeV (R=25.8 cm) for adult skull (20 cm)
- 250 MeV (R=37.7 cm) for adult trunk (34 cm)

Reconstruction is made track by track (list mode)

Three phenomena define the intrinsic limitation of pCT:

- Coulomb scattering \rightarrow limiting spatial resolution 1.
- 2.
- Nuclear interactions \rightarrow noise and additive dose 3.
- Energy loss straggling \rightarrow limiting electron density resolution

Multiple-Coulomb scattering

Protons undergo many individual elastic interactions that

Protons don't follow straight lines!

pCT reconstruction must include

a mathematical formalism to take into account MCS

F. Cassol, Atelier pCT

Most Likely Path (MLP)

Algorithm based on :

- proton position, energy and <u>direction</u>
- modeling of MCS

---- MLP ---- CSP ---- SLP

MC Path

200

---- MLP ---- CSP ---- SLP

150

100 Depth (mm)

-0.

-2.5 -3

-3.5L

50

Displacement (mm) 5-7-

Energy loss straggling

Is due to :

- the varying number of collisions
- the energy transfer fluctuations

F. Cassol, Atelier pCT

Energy loss straggling

F. Cassol, Atelier pCT

Energy loss straggling

pCT seems to be potentially better than XCT at E< 250 MeV

F. Cassol, Atelier pCT

Non elastic-nuclear interactions

Loss of the primary proton and reduction of the p fluence

$$\Phi(x) = \Phi_0 \exp(-kx)$$

 $k \sim 0.01 \text{ cm}^{-1}$ 100 MeV< E< 300 MeV

~10% (~20%) reduction after 10 (20) cm water

These protons induce noise in pCT, They are eliminated with 3σ cut

Which error in the treatment plan?

F. Cassol, Atelier pCT

pCT design: summary

Category	Parameter	Value	
Proton source	Energy	~200 MeV (head)	
		~250 MeV (trunk)	
	Energy spread	<u>∼</u> 0.1%	
	Beam intensity	$10^3 - 10^7$ protons/sec	
Accuracy	Spatial resolution	< 1 mm	Measure of x, p, E with
	Electron density resolution	< 1%	$\sigma_x < 1$ mm $\sigma_E < 1$ %
Time Efficiency	Installation time	< 10 min	MHz DAQ :
	Data acquisition time	< 5 min	A head with 100 p, 1 mm voxel
	Reconstruction time	< 15 min (treatment planning) < 5 min (dose verification)	7 10 ⁸ p: 10 kHz = 20 hrs 2 MHz = 6 min GPU recontruction
Reliability	Detector radiation hardness Measurement stability	> 1000 Gy < 1%	
Safety	Maximum dose per scan	< 5 cGy	
	Minimum distance to patient surface	10 cm	

Schulte TNS 51 (2004)

Present designs

Group	Tracker	Energy detector
Firenze/LNS (Italy)	Silicon strip detector	YAG:Ce crystals
LLU-UCSC-NIU (USA)	Silicon strip detector	CsI crystals
NIU/FNAL (USA)	Scintillating Fibers+ SiPM	Range + WLSF+ SiPM
TERA/CERN (Italy)	Gas electrons multipliers	Range + WLSF+ SiPM
GSI/HIT (Germany): Ion radiography	Stack of Ionisation chambers	Stack of ionisation chambers

PROton IMAging (PRIMA) Firenze/LNS

Tracker:

- Silicon strips, 200 µm pitch
- Active area $51 \ge 51 \text{ mm}^2$
- RAM for 10⁶ events

Calorimeter:

- 4 scint. crystals 30 x 30 mm²
- 4 PM Hamamatsu $1.8 \ge 1.8 \text{ mm}^2$
- 1 MHz

F. Cassol, Atelier pCT

LLU-UCSC-NIU collaboration

Sadrozinsky et al. IEEE (2011) F. Cassol, Atelier pCT

TABLE II. PREDICTED / RECONSTRUCTED RELATIVE STOPPING POWER RSP

Material	Predicted RSP	Reconstructed RSP
Polystyrene	1.037	1.035
Bone	1.70	1.68
Lucite	1.20	1.19
Air	0.004	0.05

Tomographic image 0.65 mm² voxel, 4 hrs at 20 kHz , reconstr. MLP+FDK+ART

LLU-UCSC-NIU collaboration

F. Cassol, Atelier pCT

Proton Range Radiography (TERA)

F. Sauli et al. (NIMA629 (2011) 337)

- Tracking: 2 GEM detectors
- Range telescope: stack of 30 plastic scint., 3mm thick, read by SiPMs

Range resolution : 1.7mm RMS Expected count rate with suitable acquisition system : 10⁶ Hz 30x30 cm² surface easily achievable

Towards ion radiography / tomography at HIT

Stack of ionization chambers (Voss et al, GSI) with new electronics

- Scanning 0°-180° in steps of 5° ¹²C pencil-beam 400 MeV/u
 3.5 mm Gaussian FWHM
 5 x 10⁶ pps
- PMMA phantom D=160 mm tissue equivalent rods d=28mm
- Multi-channel electrometer electronics highly integrated
- Simple 2D back-projected reconstruction

Proof-of-principle ¹²C Heavy Ion Tomography

Rinaldi Ph.D. research at HIT/DKFZ (in collaboration with B. Voss, GSI); Voss et al GSI Report 2010, in press

K. Parodi, 2011

F. Cassol, Atelier pCT

Conclusions

pCT must do better than 3-4% in proton range

but

can not be better than $\sim 1\%$ due to intrinsic limitations

Main challenges:

- Detector spatial resolution < 1 mm
- Energy resolution < 1%
- Fast DAQ > 1 MHz
- Iterative reconstruction in GPU

Thanks!

F. Cassol, Atelier pCT