Neutralino decays at NLO in the complex MSSM

based on: "Neutralino Decays in the Complex MSSM at One-Loop: a Comparison of On-Shell Renormalization Schemes," Phys. Rev. D 86 (2012) 075023 [arXiv:1208.4106 [hep-ph]], A. Bharucha, S. Heinemeyer, F. von der Pahlen and C. Schappacher

and work done in collaboration with A. C. Fowler, G. Moortgat-Pick, G. Weiglein.

Aoife Bharucha

Seminar, Annecy LAPTH, Nov. 29th 2012

Two clues

two is more than none

Refine MSSM predictions for a better analysis of collider data

Two Three clues

two three is more than none two

Refine MSSM predictions for a better analysis of collider data

....with complex parameters

Neutralino decays at NLO in the cMSSM

Motivation

- Cascades at the LHC lead to LSP
- Important final step often $\tilde{\chi}^0_{2,3,4}
 ightarrow \tilde{\chi}^0_1 Z, h$
- Precise predictions for sparticle decays in MSSM requires loop effects: can be very large
- \Rightarrow We calculate NLO corrections to ALL uncoloured $\tilde{\chi}^{0}_{2,3,4}$ decays
- Various issues concerning renormalisation of the complex MSSM, requires a consistent framework^a
- Compare two on-shell renormalization schemes, focus on *CP* violating phases

 $[\]stackrel{a}{}_{see}$ A. Bharucha, A. Fowler, G. Moortgat-Pick and G. Weiglein, "Consistent on shell renormalisation of electroweakinos in the complex MSSM: LHC and LC predictions," arXiv:1211.3134 [hep-ph].

Outline

a bit of structure

- Quick recap: the Chargino and Neutralino Sector
- Introducing and motivating CP violation in the MSSM
- Neutralino decays studied at LO and NLO
- Field renormalisation, issues due to absorptive contributions
- Parameter renormalisation: which masses should be on-shell?
- Comparison of two on-shell renormalization schemes, differing w.r.t. treatment of *CP violating phases*
- Prospects to use our results via direct gaugino production@LHC

Quick recap: Chargino and Neutralino Sector

$$\mathcal{L}_{\tilde{\chi}} = \tilde{\chi}_{i}^{-} (\not p \, \delta_{ij} - \omega_{L} (U^{*} X V^{\dagger})_{ij} - \omega_{R} (V X^{\dagger} U^{T})_{ij}) \tilde{\chi}_{j}^{-} + \frac{1}{2} \overline{\tilde{\chi}_{i}^{0}} (\not p \, \delta_{ij} - \omega_{L} (N^{*} Y N^{\dagger})_{ij} - \omega_{R} (N Y^{\dagger} N^{T})_{ij}) \tilde{\chi}_{j}^{0}$$

$$X = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin \beta \\ \sqrt{2}M_W \cos \beta & \mu \end{pmatrix}$$
 diagonalised via
$$\mathbf{M}_{\tilde{\chi^+}} = U^* X V^{\dagger}$$

0
 where we define $\omega_{L/R}=rac{1}{2}(1\mp\gamma_{5})$

Aoife Bharucha aoife.bharucha@desy.de

Neutralino Decays

Quick recap: Chargino and Neutralino Sector

$$\mathcal{L}_{\tilde{\chi}} = \overline{\tilde{\chi}_{i}} (\not p \, \delta_{ij} - \omega_{L} (U^{*} X V^{\dagger})_{ij} - \omega_{R} (V X^{\dagger} U^{T})_{ij}) \tilde{\chi}_{j}^{-} + \frac{1}{2} \overline{\tilde{\chi}_{i}^{0}} (\not p \, \delta_{ij} - \omega_{L} (N^{*} Y N^{\dagger})_{ij} - \omega_{R} (N Y^{\dagger} N^{T})_{ij}) \tilde{\chi}_{j}^{0}$$

$$X = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin \beta \\ \sqrt{2}M_W \cos \beta & \mu \end{pmatrix}$$
 diagonalised via
$$\mathbf{M}_{\tilde{\chi}^+} = U^* X V^{\dagger}$$

$$\begin{pmatrix} M_1 & 0 & -M_Z c_\beta s_W & M_Z s_\beta s_W \\ 0 & M_2 & M_Z c_\beta c_W & -M_Z s_\beta c_W \\ -M_Z c_\beta s_W & M_Z c_\beta c_W & 0 & -\mu \\ M_Z s_\beta s_W & -M_Z s_\beta c_W & -\mu & 0 \end{pmatrix}$$
 diagonalised via $\mathbf{M}_{\tilde{\chi^0}} = N^* Y N^{\dagger}$

 0 where we define $\omega_{L/R}=rac{1}{2}(1\mp\gamma_{5})$

Aoife Bharucha aoife.bharucha@desy.de

$\mathsf{CMSSM} \to \mathsf{cMSSM?}$

- Complex phases in the MSSM result in beyond SM CP violation
- Strong bounds on phase of 1st/2nd generation trilinear couplings via EDMs (n, e, Hg, Tl) ¹, but not so strict for 3rd generation

Important contributing phases:

 $\phi_{A_{t/b/\tau}}$, ϕ_{μ} , $\phi_{M_{1/3}}$

Note that higgsino phase is also tightly constrained by the EDM's, therefore we only consider the phase ϕ_{M_1} for the neutralino decays

¹ for review see J. R. Ellis, J. S. Lee and A. Pilaftsis, [arXiv:0808.1819 [hep-ph]].

Introduction

Calculating neutralino decays in the complex MSSM

- LO results^a encoded in SDECAY^b
- Used to distinguish SUSY breaking^c, detect CP violation at LC^d
- h, H, A mix in cMSSM \Rightarrow h_1 , h_2 , h_3
- If *q̃* heavy (as in CMSSM, GMSB or AMSB), *q q̃* final state forbidden

^ae.g. J. Gunion and H. Haber, Phys. Rev. D 37 (1988) 2515 ^bM. Mühlleitner, A. Djouadi and Y. Mambrini, Comput. Phys. Commun. 168 (2005) 46

^CK. Huitu et al, Phys. Rev. D 82 (2010) 115003 [arXiv:1006.0661 [hep-ph]]

^ae.g. H. Dreiner, O. Kittel and F. von der Pahlen, JHEP 0801 (2008) 017 [arXiv:0711.2253 [hep-ph]]

Neutralino decays at one loop

- Calculated in real MSSM and implemented in SloopS/CNNDecays²
- Loops contain EW-inos/leptons/quarks, ğs/ls/Hs or Ws or Zs
- Calculate using FeynArts/LoopTools/FormCalc/FeynHiggs³ including hard and soft QED radiation and Renormalize

²N. Baro and F. Boudjema, Phys. Rev. D 80 (2009) 076010 [arXiv:0906.1665 [hep-ph]], S. Liebler and W. Porod, Nucl. Phys. B 849 (2011) 213 [arXiv:1011.6163 [hep-ph]]

³also see A. C. Fowler and G. Weiglein, JHEP **1001** (2010) 108 [arXiv:0909.5165 [hep-ph]].

Aoife Bharucha aoife.bharucha@desv.de

Renormalisation of the Electroweakino sector I⁴

Field renormalisation:

Require correct on-shell properties for:

• renormalised two point functions:

$$\hat{\Gamma}_{ij}^{(2)}(p^2) = i(p - m_i)\delta_{ij} + i\hat{\Sigma}_{ij}(p^2)$$

• renormalised propagator:

$$\hat{S}^{(2)}_{ij}(p^2) = -(\hat{\Gamma}^{(2)}_{ij}(p^2))^{-1}$$

⁴see A. C. Fowler, PhD Thesis, 2010

Renormalisation of the Electroweakino sector I⁵

Definitions and on-shell conditions:

The neutralino field RCs are defined as above:

$$\begin{split} \omega_L \tilde{\chi}_i^0 &\to \left(1 + \frac{1}{2} \delta Z_0^L\right)_{ij} \omega_L \tilde{\chi}_j^0, \qquad \overline{\tilde{\chi}_i^0} \omega_R \to \overline{\tilde{\chi}_i^0} (1 + \frac{1}{2} \delta \overline{Z}_0^L)_{ij} \omega_R, \\ \omega_R \tilde{\chi}_i^0 &\to \left(1 + \frac{1}{2} \delta Z_0^R\right)_{ij} \omega_R \tilde{\chi}_j^0, \qquad \overline{\tilde{\chi}_i^0} \omega_L \to \overline{\tilde{\chi}_i^0} (1 + \frac{1}{2} \delta \overline{Z}_0^R)_{ij} \omega_L. \end{split}$$

One must impose the on-shell conditions:

• $\hat{\Gamma}_{ij}^{(2)}$ should be diagonal, e.g. $\hat{\Gamma}_{ij}^{(2)}\tilde{\chi}_i(p)|_{p^2=m_{\tilde{\chi}_i}^2}=0$

•
$$\hat{S}_{ij}^{(2)}$$
 should have a unity residue,
e.g. $\lim_{p^2 \to m_{\tilde{\chi}_i}^2} \frac{1}{\not{p} - m_{\tilde{\chi}_i}} \hat{\Gamma}_{ii}^{(2)} \tilde{\chi}_i(p) = i \tilde{\chi}_i$

⁵see A. C. Fowler, PhD Thesis, 2010

Where does our approach differ?

Usual approach: Assume $\delta \overline{Z}_{ij} = \delta Z_{ij}^{\dagger}$ \Rightarrow Expressions for the wave-function renormalisation e.g. for charginos

$$\begin{split} \delta Z_{-,ij}^{L/R} &= \frac{2}{m_{\tilde{\chi}_{j}^{\pm}}^{2} - m_{\tilde{\chi}_{j}^{\pm}}^{2}} \widetilde{\mathrm{Re}} \left[m_{\tilde{\chi}_{j}^{\pm}}^{2} \Sigma_{-,ij}^{L/R} (m_{\tilde{\chi}_{j}^{\pm}}^{2}) + m_{\tilde{\chi}_{i}^{\pm}} m_{\tilde{\chi}_{j}^{\pm}} \Sigma_{-,ij}^{R/L} (m_{\tilde{\chi}_{j}^{\pm}}^{2}) + m_{\tilde{\chi}_{i}^{\pm}} \Sigma_{-,ij}^{SL/SR} (m_{\tilde{\chi}_{j}^{\pm}}^{2}) \right. \\ &+ m_{\tilde{\chi}_{j}^{\pm}} \Sigma_{-,ij}^{SR/SL} (m_{\tilde{\chi}_{j}^{\pm}}^{2}) - m_{\tilde{\chi}_{i/j}^{\pm}} (U^{*} \delta X V^{\dagger})_{ij} - m_{\tilde{\chi}_{j/i}^{\pm}} (V \delta X^{\dagger} U^{T})_{ij}], \end{split}$$

$$\begin{split} \delta \bar{Z}_{-,ij}^{L/R} &= \frac{2}{m_{\tilde{\chi}_{j}^{\pm}}^{2} - m_{\tilde{\chi}_{i}^{\pm}}^{2}} \widetilde{\operatorname{Re}} \left[m_{\tilde{\chi}_{i}^{\pm}}^{2} \Sigma_{-,ij}^{L/R} (m_{\tilde{\chi}_{i}^{\pm}}^{2}) + m_{\tilde{\chi}_{i}^{\pm}} m_{\tilde{\chi}_{j}^{\pm}} \Sigma_{-,ij}^{R/L} (m_{\tilde{\chi}_{i}^{\pm}}^{2}) + m_{\tilde{\chi}_{i}^{\pm}} \Sigma_{-,ij}^{SL/SR} (m_{\tilde{\chi}_{i}^{\pm}}^{2}) \right. \\ &+ m_{\tilde{\chi}_{j}^{\pm}} \Sigma_{-,ij}^{SR/SL} (m_{\tilde{\chi}_{i}^{\pm}}^{2}) - m_{\tilde{\chi}_{i/j}^{\pm}} (U^{*} \delta X V^{\dagger})_{ij} - m_{\tilde{\chi}_{j/i}^{\pm}} (V \delta X^{\dagger} U^{T})_{ij} \Big] \end{split}$$

Only consistent soln. to OS eqs using $\widetilde{\mathrm{Re}} \Rightarrow$ drop absorptive part Additional finite renormalisation term required to restore on-shell properties of external states

Where does our approach differ?

We do not require hermiticity condition:

$$\begin{split} \delta Z_{-,ij}^{L/R} &= \frac{2}{m_{\tilde{\chi}_{i}^{\pm}}^{2} - m_{\tilde{\chi}_{j}^{\pm}}^{2}} \prod_{i=1}^{N} \left[m_{\tilde{\chi}_{j}^{\pm}}^{2} \Sigma_{-,ij}^{L/R} (m_{\tilde{\chi}_{j}^{\pm}}^{2}) + m_{\tilde{\chi}_{i}^{\pm}} m_{\tilde{\chi}_{j}^{\pm}} \Sigma_{-,ij}^{R/L} (m_{\tilde{\chi}_{j}^{\pm}}^{2}) + m_{\tilde{\chi}_{i}^{\pm}} \Sigma_{-,ij}^{SL/SR} (m_{\tilde{\chi}_{j}^{\pm}}^{2}) \right. \\ &+ m_{\tilde{\chi}_{j}^{\pm}} \Sigma_{-,ij}^{SR/SL} (m_{\tilde{\chi}_{j}^{\pm}}^{2}) - m_{\tilde{\chi}_{i/j}^{\pm}} (U^{*} \delta X V^{\dagger})_{ij} - m_{\tilde{\chi}_{j/i}^{\pm}} (V \delta X^{\dagger} U^{T})_{ij}], \end{split}$$

$$\begin{split} \delta \bar{Z}_{-,ij}^{L/R} &= \frac{2}{m_{\tilde{\chi}_{j}^{\pm}}^{2} - m_{\tilde{\chi}_{i}^{\pm}}^{2}} \widetilde{P} \left[m_{\tilde{\chi}_{i}^{\pm}}^{2} \Sigma_{-,ij}^{L/R}(m_{\tilde{\chi}_{i}^{\pm}}^{2}) + m_{\tilde{\chi}_{i}^{\pm}} \Sigma_{-,ij}^{R/L}(m_{\tilde{\chi}_{i}^{\pm}}^{2}) + m_{\tilde{\chi}_{i}^{\pm}} \Sigma_{-,ij}^{SL/SR}(m_{\tilde{\chi}_{i}^{\pm}}^{2}) \right. \\ &+ m_{\tilde{\chi}_{j}^{\pm}} \Sigma_{-,ij}^{SR/SL}(m_{\tilde{\chi}_{i}^{\pm}}^{2}) - m_{\tilde{\chi}_{i/j}^{\pm}}(U^{*} \delta X V^{\dagger})_{ij} - m_{\tilde{\chi}_{j/i}^{\pm}}(V \delta X^{\dagger} U^{T})_{ij}] \end{split}$$

In the CP-conserving case one can choose a scheme where (up to purely imaginary terms that do not contribute to squared matrix elements at 1-loop) the hermiticity relation holds: $\delta \bar{Z}_{ij} = \delta Z^{\dagger}_{ij}$

Keep absorptive parts of loop integrals

Illustration of effect of absorptive parts

for the case of chargino production at a linear collider

•
$$\delta\sigma/\sigma$$
 for
 $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_2^-$ as a
function of ϕ_{A_r}

 Absorptive part of loop integrals is included (solid) and ignored (dashed) for field RCs

Illustration of effect of absorptive parts

for the case of chargino production at a linear collider

•
$$\delta\sigma/\sigma$$
 for
 $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_2^-$ as a
function of ϕ_{A_t}

 Absorptive part of loop integrals is included (solid) and ignored (dashed) for field RCs

Illustration of effect of absorptive parts

for the case of chargino production at a linear collider

•
$$\delta\sigma/\sigma$$
 for
 $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_2^-$ as a
function of ϕ_{A_t}

 Absorptive part of loop integrals is included (solid) and ignored (dashed) for field RCs

Important effect at linear collider precision

Renormalisation of the Electroweakino sector II⁶

Parameter renormalisation:

• $X + \delta X$, $Y + \delta Y \Rightarrow M_1 + \delta M_1$, $M_2 + \delta M_2$ and $\mu + \delta \mu$ Note $\overline{\text{DR}}$ renormalisation for $\tan \beta$ (δt_β) as in Higgs sector, i.e. like $\overline{\text{MS}}$ with Dim. Reduction instead of Dim. Reg. suitable for SUSY^a

• e.g.
$$\delta X = \begin{pmatrix} \delta M_2 & \frac{\delta M_W^2 s_\beta}{\sqrt{2} M_W} + M_W s_\beta c_\beta^2 \delta t_\beta \\ \frac{\delta M_W^2 c_\beta}{\sqrt{2} M_W} - M_W c_\beta s_\beta^2 \delta t_\beta & \delta \mu \end{pmatrix}$$

• Fix $\delta |M_1|, \delta |M_2|$ and $\delta |\mu|$ by choosing three (of six) masses on-shell

^asee e.g. D. Stockinger, "Regularization by dimensional reduction: Consistency, quantum action principle, and supersymmetry," JHEP 0503 (2005) 076 [arXiv:hep-ph/0503129]

see A. C. Fowler, PhD Thesis, 2010

Renormalisation of the Electroweakino sector II⁷

Parameter renormalisation:

- Fix $\delta |M_1|, \delta |M_2|$ and $\delta |\mu|$ by choosing three (of six) masses on-shell:
- More physical masses than independent parameters ⇒ can only choose three masses on-shell:

•
$$\tilde{\chi}_{1,2}^{\pm}$$
, $\tilde{\chi}_{1(2/3)}^{0}$:NCC(b/c)
• $\tilde{\chi}_{1,2}^{0}$, $\tilde{\chi}_{2}^{\pm}$: NNC or
• $\tilde{\chi}_{1,2}^{0}$, $\tilde{\chi}_{3}^{0}$: NNN

see A. C. Fowler, PhD Thesis, 2010

Renormalisation of the Electroweakino sector II⁷

Parameter renormalisation:

- Fix $\delta |M_1|, \delta |M_2|$ and $\delta |\mu|$ by choosing three (of six) masses on-shell:
- More physical masses than independent parameters ⇒ can only choose three masses on-shell:
 - $\tilde{\chi}_{1,2}^{\pm}, \tilde{\chi}_{1(2/3)}^{0}$:NCC(b/c) • $\tilde{\chi}_{1,2}^{0}, \tilde{\chi}_{2}^{\pm}$: NNC or • $\tilde{\chi}_{1,2}^{0}, \tilde{\chi}_{3}^{0}$: NNN

Does it make a difference?

see A. C. Fowler, PhD Thesis, 2010

Parameter renormalisation cont'd⁸

	NNN	NNC	NCC
$\delta M_1 $	-1.468	-1.465	-1.468
$\delta M_2 $	-9.265	-9.265	-9.410
$\delta \mu $	-18.494	-18.996	-18.996
$\Delta m_{\tilde{\chi}_{i}^{0}}$	0	0	0
$\Delta m_{\tilde{\chi}_2^0}^{\chi_1^0}$	0	0	-0.1446
$\Delta m_{\tilde{\chi}_2^0}$	0	-0.5012	-0.5016
$\Delta m_{\tilde{\chi}_4^0}$	0.3237	-0.1775	-0.1775
$\Delta m_{\tilde{\chi}^{\pm}}$	0.1446	0.1445	0
$\Delta m_{\tilde{\chi}_2^{\pm}}^{\chi_1}$	0.5012	0	0

- Finite parts of parameter renormalisation constants (RCs) and mass corrections in GeV for the gaugino-like CPX scenario: $|M_2|$ =200 GeV, $M_3 = 1000e^{i\pi/2}$ GeV, $|A_f|$ =900 GeV, $\phi_{f1,2} = \pi$, $\phi_{f3} = \pi/2$, $M_{\rm SUSY}$ =500 GeV, $\mu = 2000$ GeV with $M_{H^{\pm}} = 132.1$ GeV and tan $\beta = 5.5$
- Last two columns, denoted with an asterisk, show the results for a higgsino-like CPX scenario, with $\mu = 200 \text{ GeV}$, $M_1 = (5/3)(s_W^2/c_W^2)M_2$ and $M_2 = 1000 \text{ GeV}$, and all other parameters the same as the CPX scenario

^OA. C. Fowler, PhD Thesis, 2010, also see A. Chatterjee, M. Drees, S. Kulkarni, Q. Xu, "On the On-Shell Renormalization of the Chargino and Neutralino Masses in the MSSM," [arXiv:1107.5218 [hep-ph]].

Parameter renormalisation cont'd⁸

	NNN	NNC	NCC	NCCb	NCCc	
$\delta M_1 $	-1.468	-1.465	-1.468	2518.7	-3684.6	
$\delta M_2 $	-9.265	-9.265	-9.410	-9.410	-9.410	
$\delta \mu $	-18.494	-18.996	-18.996	-18.996	-18.996	
$\Delta m_{\tilde{\chi}_1^0}$	0	0	0	2518.8	-3681.1	
$\Delta m_{\tilde{\chi}_2^0}^{\Lambda_1}$	0	0	-0.1446	0	0.356	
$\Delta m_{\tilde{\chi}_2^0}$	0	-0.5012	-0.5016	-0.8446	0	
$\Delta m_{\tilde{\chi}_4^0}$	0.3237	-0.1775	-0.1775	0.6851	-1.439	
$\Delta m_{\tilde{\chi}^{\pm}}$	0.1446	0.1445	0	0	0	
$\Delta m_{\tilde{\chi}_2^{\pm}}^{\chi_1}$	0.5012	0	0	0	0	

- Finite parts of parameter renormalisation constants (RCs) and mass corrections in GeV for the gaugino-like CPX scenario: $|M_2|$ =200 GeV, $M_3 = 1000e^{i\pi/2}$ GeV, $|A_f|$ =900 GeV, $\phi_{f1,2} = \pi$, $\phi_{f3} = \pi/2$, $M_{\rm SUSY}$ =500 GeV, $\mu = 2000$ GeV with $M_{H^{\pm}} = 132.1$ GeV and tan $\beta = 5.5$
- Last two columns, denoted with an asterisk, show the results for a higgsino-like CPX scenario, with $\mu = 200 \text{ GeV}$, $M_1 = (5/3)(s_W^2/c_W^2)M_2$ and $M_2 = 1000 \text{ GeV}$, and all other parameters the same as the CPX scenario

^OA. C. Fowler, PhD Thesis, 2010, also see A. Chatterjee, M. Drees, S. Kulkarni, Q. Xu, "On the On-Shell Renormalization of the Chargino and Neutralino Masses in the MSSM," [arXiv:1107.5218 [hep-ph]].

Parameter renormalisation cont'd⁸

	NNN	NNC	NCC	NCCb	NCCc	NCCb*	NCCc*
$\delta M_1 $	-1.468	-1.465	-1.468	2518.7	-3684.6	-355.6	-4.642
$\delta M_2 $	-9.265	-9.265	-9.410	-9.410	-9.410	10.683	10.683
$\delta \mu $	-18.494	-18.996	-18.996	-18.996	-18.996	-5.136	-5.136
$\Delta m_{\tilde{\chi}_1^0}$	0	0	0	2518.8	-3681.1	-11.44	-0.636
$\Delta m_{\tilde{\chi}^0_2}$	0	0	-0.1446	0	0.356	0	-0.671
$\Delta m_{\tilde{\chi}_2^0}$	0	-0.5012	-0.5016	-0.8446	0	-339.5	0
$\Delta m_{\tilde{\chi}_4^0}$	0.3237	-0.1775	-0.1775	0.6851	-1.439	-0.0794	-0.0328
$\Delta m_{\tilde{\chi}^{\pm}}$	0.1446	0.1445	0	0	0	0	0
$\Delta m_{ ilde{\chi}_2^\pm}^{ imes_1}$	0.5012	0	0	0	0	0	0

- Finite parts of parameter renormalisation constants (RCs) and mass corrections in GeV for the gaugino-like CPX scenario: $|M_2|$ =200 GeV, $M_3 = 1000e^{i\pi/2}$ GeV, $|A_f|$ =900 GeV, $\phi_{f1,2} = \pi$, $\phi_{f3} = \pi/2$, $M_{\rm SUSY}$ =500 GeV, $\mu = 2000$ GeV with $M_{H^{\pm}} = 132.1$ GeV and tan $\beta = 5.5$
- Last two columns, denoted with an asterisk, show the results for a higgsino-like CPX scenario, with $\mu = 200 \text{ GeV}$, $M_1 = (5/3)(s_W^2/c_W^2)M_2$ and $M_2 = 1000 \text{ GeV}$, and all other parameters the same as the CPX scenario

^OA. C. Fowler, PhD Thesis, 2010, also see A. Chatterjee, M. Drees, S. Kulkarni, Q. Xu, "On the On-Shell Renormalization of the Chargino and Neutralino Masses in the MSSM," [arXiv:1107.5218 [hep-ph]].

Parameter renormalisation: phases

A comparison of the two approaches

Scheme I:

- Find that imaginary part of field RC is UV convergent $\operatorname{Im} \delta[Z_{\pm,11}^{L/R}]^{\operatorname{div}} \stackrel{S_{\mathrm{I}}}{\coloneqq} 0$
- Obtain $\delta \phi s$ from three additional conditions: $\mathrm{Im} \delta Z_{\pm,11/22}^{L/R} \stackrel{\mathrm{S}_{\mathrm{I}}}{:=} 0$, $\mathrm{Im} \delta Z_{0,11}^{L/R} \stackrel{\mathrm{S}_{\mathrm{I}}}{:=} 0$
- $\Rightarrow \delta \phi_{M_2}$ also renormalised

Scheme II:

- Assume $\delta \phi_{M_2} = 0$ as $\phi_{M_2} = 0$
- Find on-shell expression for $\delta \phi_{\mu}$, $\delta \phi_{M_1}$ UV-convergent $\delta \phi_{\mu}^{\text{div}} \stackrel{\text{SII}}{:=} 0$, $\delta \phi_{M_1}^{\text{div}} \stackrel{\text{SII}}{:=} 0$ \Rightarrow Phases do not require renormalization
- Phases remain at tree-level value

NLO result for neutralino decays

Scenarios chosen to ensure all colourless channels are open

MSSM parameters for the initial numerical investigation									
aneta	M ^{H+}	$m_{\tilde{\chi}_2^{\pm}}$	$m_{\tilde{\chi}_1^{\pm}}$	$M_{\tilde{\ell}_L}$	$M_{\tilde{\ell}_R}$	A	M _{q̃L}	M _{q̃R}	Aq
20	160	600	350	300	310	400	1300	1100	2000

The chargino and neutralino masses in S_g and S_h									
Scenario	$m_{\tilde{\chi}_2^{\pm}}$	$m_{ ilde{\chi}_1^\pm}$	$m_{ ilde{\chi}^0_4}$	$m_{ ilde{\chi}^0_3}$	$m_{ ilde{\chi}^0_2}$	$m_{ ilde{\chi}_1^0}$	μ	<i>M</i> ₂	<i>M</i> ₁
Sg	600.0	350.0	600.0	364.2	359.6	267.2	362.1	581.8	277.7
S_h	600.0	350.0	600.1	586.2	349.9	171.4	581.8	362.1	172.8

(masses are in GeV)

Decays to the LSP and neutral Higgs bosons ($\mu < M_2$, $\mu > M_2$)

Aoife Bharucha aoife.bharucha@desy.de

Neutralino Decays

Decays to the LSP and neutral Higgs bosons ($\mu < M_2$, $\mu > M_2$)

Aoife Bharucha aoife.bharucha@desy.de

Neutralino Decays

25

Decays to the LSP and neutral Higgs bosons ($\mu < M_2, \mu > M_2$)

Aoife Bharucha aoife.bharucha@desy.de

25

Aoife Bharucha aoife.bharucha@desy.de

Aoife Bharucha aoife.bharucha@desy.de

Aoife Bharucha aoife.bharucha@desy.de

Numerical comparison of the schemes

Difference between $\delta \Gamma / \Gamma$ for S_I and S_{II}

Channel	S	g	S _h			
	45 [°]	90°	45 [°]	90°		
$\tilde{\chi}_4^0 \rightarrow \tilde{\chi}_1^0 h_1$	-1.92×10^{-4}	-6.09×10^{-4}	$-6.29 imes 10^{-5}$	$-1.8 imes 10^{-4}$		
$\tilde{\chi}_4^0 \rightarrow \tilde{\chi}_1^0 h_2$	$4.46 imes 10^{-4}$	5.18×10^{-4}	1.54×10^{-4}	1.74×10^{-4}		
$ ilde{\chi}^0_4 ightarrow ilde{\chi}^0_1 h_3$	-1.35×10^{-4}	$-3.6 imes10^{-4}$	-9.13×10^{-5}	-2.21×10^{-4}		
$\tilde{\chi}_4^{\dot{0}} \rightarrow \tilde{\chi}_2^{\bar{0}} h_1$	$-1.15 imes 10^{-5}$	$5.38 imes 10^{-5}$	$2.67 imes 10^{-6}$	$6.07 imes 10^{-6}$		
$\tilde{\chi}_4^0 \rightarrow \tilde{\chi}_2^0 h_2$	1.32×10^{-4}	$-4.88 imes 10^{-4}$	6.02×10^{-6}	$7.08 imes 10^{-6}$		
$\tilde{\chi}_4^0 \rightarrow \tilde{\chi}_2^0 h_3$	$5.51 imes10^{-5}$	1.04×10^{-4}	$4.46 imes 10^{-6}$	$8.63 imes 10^{-6}$		
$\tilde{\chi}_4^0 ightarrow \tilde{\chi}_3^0 h_1$	2.39×10^{-4}	-7.2×10^{-4}				
$\tilde{\chi}_4^0 \rightarrow \tilde{\chi}_3^0 h_2$	-2.84×10^{-5}	3.22×10^{-5}				
$ ilde{\chi}^0_4 ightarrow ilde{\chi}^0_3 h_3$	-5.07×10^{-5}	$-1.58 imes 10^{-4}$				
$\tilde{\chi}_4^0 \rightarrow \tilde{\chi}_1^0 Z$	$1.15 imes 10^{-3}$	7.48×10^{-4}	1.18×10^{-4}	1.74×10^{-4}		
$\tilde{\chi}_4^0 \rightarrow \tilde{\chi}_2^0 Z$	2.16×10^{-4}	$-3.44 imes 10^{-4}$	9.51×10^{-6}	7.26×10^{-6}		
$\tilde{\chi}_4^0 \rightarrow \tilde{\chi}_3^0 Z$	-4.51×10^{-5}	1.23×10^{-5}				
$\tilde{\chi}_4^0 \rightarrow \nu_{\tau} \tilde{\nu}_{\tau}^{\dagger}$	-3.45×10^{-6}	$-7.03 imes 10^{-6}$	$-8.93 imes 10^{-6}$	$-1.93 imes 10^{-5}$		
$\tilde{\chi}_4^0 \rightarrow \tilde{\chi}_1^+ H^-$	$1.53 imes 10^{-5}$	1.97×10^{-5}	-6.91×10^{-6}	-4.81×10^{-6}		
$\tilde{\chi}_4^0 \rightarrow \tilde{\chi}_1^+ W^-$	$3.44 imes10^{-6}$	$6.14 imes 10^{-6}$	9.87×10^{-5}	$9.74 imes 10^{-5}$		
$\tilde{\chi}_4^0 \rightarrow \tau^- \tilde{\tau}_1^+$	-1.33×10^{-6}	$3.65 imes 10^{-6}$	$-3.47 imes 10^{-5}$	$-1.07 imes 10^{-5}$		
$\tilde{\chi}_4^0 \rightarrow \tau^- \tilde{\tau}_2^+$	-6.45×10^{-5}	-6.15×10^{-5}	-1.09×10^{-4}	-1.05×10^{-4}		

Differentiating between renormalisation schemes (S_{I}, S_{II})

21

Prospects for direct EWino production@LHC

Clues about parameters? (work in progress)

Channel with possibly large cross-section is $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$

- Channels of interest: $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 Z$, $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 h_1$, $\tilde{\chi}_2^0 \to \tau^- \tilde{\tau}_1^+$
- Main players: $|M_1|$, ϕ_{M_1} , $|M_2|$, $|\mu|$, $M_{\widetilde{ au}_R}$

Latest news from HCP

Latest news from HCP

Results for benchmark scenario 1

scenario 2 in progress

 $\mu=$ 400 GeV, $M_2=$ 300 GeV, $M_1: \mathrm{GUT}, \ m_{\widetilde{ au}_R}=m_{\widetilde{\chi}^0_2}-$ 25 GeV

Results for benchmark scenario 1

scenario 2 in progress

 $\mu=$ 400 GeV, $M_2=$ 300 GeV, $M_1: \mathrm{GUT}, \ m_{ ilde{ au}_R}=m_{ ilde{ au}_2^0}-$ 25 GeV

Summary

and Outlook

Neutralino decays at 1-loop in the complex MSSM:

- Calculated all neutralino decays to uncoloured final states
- Effects can be large, easily 20-30% in decays to Higgses, crucial to include
- CP effects can also be very large, espeically when external neutralino is bino-higgsino mixture

Summary

and Outlook

Neutralino decays at 1-loop in the complex MSSM:

- Calculated all neutralino decays to uncoloured final states
- Effects can be large, easily 20-30% in decays to Higgses, crucial to include
- CP effects can also be very large, espeically when external neutralino is bino-higgsino mixture

Renormalization of the electroweakino sector of the cMSSM

- Absorptive parts should be included ($\sim 2\%$ effects) + on-shell masses chosen carefully
- Renormalization of phases tricky: what does on-shell mean?
- Difference between relative size of the corrections in two treatments of CP phases is \lesssim 0.1%, largest for channels with strong ϕ_{M_1} dependence.

Summary

and Outlook

Neutralino decays at 1-loop in the complex MSSM:

- Calculated all neutralino decays to uncoloured final states
- Effects can be large, easily 20-30% in decays to Higgses, crucial to include
- CP effects can also be very large, espeically when external neutralino is bino-higgsino mixture

Renormalization of the electroweakino sector of the cMSSM

- Absorptive parts should be included ($\sim 2\%$ effects) + on-shell masses chosen carefully
- Renormalization of phases tricky: what does on-shell mean?
- Difference between relative size of the corrections in two treatments of CP phases is \lesssim 0.1%, largest for channels with strong ϕ_{M_1} dependence.

Things for the future:

- Important for LHC analyses, and more for LC analyses, where % level precision anticipated for $\tilde{\chi}^0$ BRs
- Same vertices important for calculation of relic density
- The results for the neutralino decays will be implemented into the code FeynHiggs.

Thanks for listening!9

⁹and to Flip Tanedo for letting me use his beamer theme

Why calculate loop effects

and why the on-shell scheme?

SUSY loop effects known to be large:

- Particularly in the Higgs sector \Rightarrow 1-loop effects for $h_a \to \tilde{\chi}_i^+ \tilde{\chi}_j^-$ likely to be sizeable
- Fundamental parameter determination possible at LC to % level, loop effects critical so theory meets experimental accuracy
- CP violation strongly restricted in chargino sector at tree-level, can arise via loops, e.g. in stop sector

Use of on-shell scheme:

- Parameters have a clear physical meaning, experimentally measuremable
- safe-guard infra-red properties of the result

Analogy to the CKM Matrix

- On-shell conditions result in inconsistent equations due to branch cuts in self energies¹⁰
- Ignore absorptive parts \Rightarrow gauge dependence of $\delta V_{\rm CKM}$
- Possible solutions via mass renormalization¹¹, but not fully on-shell
- Require separate incoming and out-going wfr constants ¹², 0.5% observable difference

¹⁰ A. Denner and T. Sack, Nucl. Phys. B **347** (1990) 203

¹¹B. A. Kniehl and A. Sirlin, Phys. Rev. D **74** (2006) 116003, B. A. Kniehl and A. Sirlin, Phys. Lett. B **673** (2009) ²⁰⁸

¹²D. Espriu, J. Manzano and P. Talavera, Phys. Rev. D **66**, 076002 (2002)