

GROUPE NUTHEO Physique Nucléaire Théorique

Journée M2PSA du 3 octobre 2012 "stages et thèses" 2012/2013

Hervé MOLIQUE, pour le Groupe NUTHEO

IPHC/DRS et Université de Strasbourg

Herve.Molique@iphc.cnrs.fr

Le groupe NUTHEO en quelques mots...

Responsable

M. Jerzy DUDEK

Jerzy.Dudek@iphc.cnrs.fr

Tél: 03 88 10 64 98

Localisation au sein de l'IPHC

Bâtiment 27, deuxième étage

5 enseignants-chercheurs

- M. Jerzy DUDEK (Responsable du groupe), Professeur
- Mme Marianne DUFOUR, Maître de Conférences
- Mme Dominique SPEHLER, Maître de Conférences
- M. Johann BARTEL, Maître de Conférences
- M. Hervé MOLIQUE, Maître de Conférences

3 chercheurs CNRS

- Mme Kamila SIEJA, Chargée de Recherches
- M. Frédéric NOWACKI, Directeur de Recherches
- M. Rimantas LAZAUSKAS, Chargé de Recherches

2 chercheurs CNRS émérites

- M. Etienne CAURIER, Directeur de Recherches Emérite
- M. Andres ZUKER, Directeur de Recherches Emérite

2 étudiants en thèse

- Mme Héléna ZLIWINSKA
 - M. David ROUVEL

ACTIVITES DE RECHERCHE &

SUJETS DE STAGES/THESES

Activités de recherche... les grandes lignes

STRUCTURE NUCLEAIRE:

- Systèmes few-body, modèles en amas
- Champ moyen
- Modèle en couches
- Approches semi-classiques

REACTIONS NUCLEAIRES :

- Fusion-fission
- ullet Emission de particules lpha
- Réactions d'intérêt astrophysique

PHYSIQUE MATHEMATIQUE, THEORIE QUANTIQUE DES CHAMPS :

- Théories de jauges (non)commutatives
- Modèle Standard et au-delà
- Condensat de Bose-Einstein

Few body et Modèle en Amas

L'équipe

- Marianne DUFOUR
- Rimantas LAZAUSKAS

Les thématiques abordées

- Méthodes de résolution du problème à N-corps quantique
 - Méthodes ab-initio (Faddeev-Yakubowski)
 - Modèles microscopiques en amas
 - Description simultanée des états liés, de diffusion et résonants

Champs d'application

- Réactions nucléaires impliquant un petit nombre de corps devant être rigoureusement traitées
- Étude de l'interaction nucléaire
- Réactions d'intérêt astrophysique
- Structure des états condensats et moléculaires

Few body et Modèle en Amas

Proposition de sujet de stage M2

"Etude des sections efficaces de production de l'anti-hydrogène \bar{H} et de l'ion antihydrogène \bar{H}^+ dans l'expérience GBAR"

- Sujet en collaboration avec M. P.-A. HERVIEUX (IPCMS)
- GBAR = Gravitational Behavior of Antihydrogene at Rest
- Calcul de sections efficaces pour modèle de collision quantique à deux corps $\bar{p} + Ps \rightarrow \bar{H} + e^-$
- Initiation aux méthodes ab-initio
- Aspects formels et numériques

Few body et Modèle en Amas

Proposition de sujet de thèse

"Rigorous description of the non-relativistic quantum few-particle collision processes"

- Sujet en collaboration avec M. P.-A. HERVIEUX (IPCMS)
- Suite logique du stage M2 (première étape : solution du problème du stage de manière exacte)
- Sujet pluridisciplinaire : physique nucléaire, atomique, moléculaire
- Solution exacte pour le problème de diffusion à cinq nucléons ${}^2H + {}^3H \rightarrow {}^4He + n$

Contacts pour le stage et la thèse

Marianne.Dufour@iphc.cnrs.fr, Rimantas.Lazauskas@iphc.cnrs.fr, Paul-Antoine.Hervieux@ipcms.u-strasbg.fr

Champ Moyen

L'équipe

- Johann BARTEL
- Jerzy DUDEK
- Hervé MOLIQUE
- David ROUVEL (Thèse)
- Héléna ZSLIWINSKA (Thèse)

Les thématiques abordées

- Champs moyens auto-cohérents et non auto-cohérents
- Noyaux superlourds
- Formes nucléaires exotiques (tétraèdres...)
- Théorie des groupes
- Problème inverse
- Interaction nucléon-nucléon
- Appariement nucléaire et corrélations au-delà du champ moyen

Champ Moyen

Proposition de sujet de stage M2

"Détermination du champ moyen nucléaire à partir de l'interaction nucléon-nucléon"

- Aspects théoriques: détermination formelle et systématique de la structure du champ moyen telle qu'elle est autorisée par les principes de symétrie fondamentaux. étude de termes exotiques (ALS) etc.
- Aspects numériques: mise en oeuvre informatique des structures ainsi calculées. Paramétrisation des interactions et étude du problème inverse dans les déterminations paramétriques (Décomposition en Valeurs Singulières, procédure de régularisation de Tikhonov etc.).
- Poursuite possible de ce travail en thèse.

Contact pour le stage

Herve.Molique@iphc.cnrs.fr

Modèle en Couches

Excitations collectives:

- Déformation, Superdéformation, Dipole/M1 resonances
- Superfluidité
- **Symétries**

Processus faibles:

- décroissances β
- décroissances BB

$$[T_{1/2}^{0\nu}(0^+\to 0^+)]^{-1} = G_{0\nu}|M^{0\nu}|^2\langle m_\nu\rangle^2$$

définition d'une interaction effective

$$\mathcal{H}_{eff}\Psi_{eff} = E\Psi_{eff}$$

construire et diagonaliser la matrice Energie

Structure nucléaire loin de la stabilité:

- Disparition de fermeture de couches
 - Nouveaux nombres magigues

Calculs Ab Initio:

interactions réalistes NN + NNN

Modèle en Couches

L'équipe

- Kamila SIEJA
- Frédéric NOWACKI
- Etienne CAURIER
- Andres ZUKER

Proposition de sujet de stage M2

"Etude systématique de l'énergie de liaison de chaînes de neutrons"

Proposition de sujet de thèse

"Introduction d'une force 3N dérivée des théories chirales – notion d'état de particule individuelle dans mes noyaux (facteur spectrosocopique, quenching Gamow-Teller, etc ...)"

Modèle en Couches

Concernant les sujets de stage/thèse

- Espace de valence : tous les états d'énergie d'excitation jusqu'à $N\hbar\omega$ dans la base de l'oscillateur harmonique.
- Transformation unitaire de Lee-Suzuki pour obtenir l'interaction effective dans l'espace modèle.
- Emploi d'interactions NN réalistes modernes CD-Bonn, Argonne, N3LO ...
- Développements pour l'ajout d'interactions NNN.

Contacts

Kamila.Sieja@iphc.cnrs.fr, Frederic.Nowacki@iphc.cnrs.fr

Champ Moyen et Méthodes Semi-Classiques

L'équipe

Johann BARTEL

Les thématiques abordées

- Correlations au-delà du champ moyen (appariement et corrélations vibrationnelles)
- Traitement de ces corrélations à travers l'approche HTDA ('Highly Truncated Diagonalisation Approach")
- Approche de Thomas-Fermi généralisée
- Description de processus de fusion-fission
- Description auto-cohérente des propriétés de type "goutte liquide"
- Description exactes de systèmes nucléaires fortement excités
- Description des formes nucléaires de l'état fondamental au point de scission
- Resolution des équations du mouvement pour des coordonnées géneralisées (paramètres de déformation)
- Prédictions sur les distributions de masse et d'énergie des fragments
- Description de la formation et survie des noyaux superlourds

Physique des Hautes Energies – Physique Mathématique

L'équipe

Dominique SPEHLER

Les thématiques abordées

- Physique des Hautes Energies: particules de spin3/2, interactions effectives, méthode d'hélicité, gravitation, symétrie chirale, monopole magnétique, modèles composés, modèle standard et au delà, modèle standard dans les espaces à dimensions supplémentaires
- Physique Mathématique: inverse scattering, application des méthodes de théorie des champs à la physique nucléaire et à la condensation de Bose Einstein, algèbres non commutatives en théorie des champs