Sujet stage et thèse : Les états isomériques vs **VHE-SHE**

INARITÉ

"Région SHE-VHE vs îlot de stabilité

126

Quelles orbitales jouent un rôle ?

C'est un état, autre que l'état fondamental, avec une durée de vie *"longue*" (suffisamment pour être observée)

Dans la littérature on distingue 3 types d'isomères : a) de forme (i.e.de "fission" : barrière à franchir)

- b) de spin (faible probabilité de transition entre 2 états de spin différents : Weisskopf)
- c) cas particulier :les isomères-K (plus la différence ∆K entre deux états est importante, plus le temps de vie de l'isomère est grand) : domaine VHE

Les états d'isomérisme-K : pourquoi les étudier ?

Leurs caractéristiques (spin, parité, énergie d'excitation) sont en fait très contraignantes pour les modèles théoriques.

Pour les noyaux impair-impair : ils sont fréquents (proximité de niveaux avec K différent)

Pour les noyaux pair-pair : lié à des états 2 qp

696

R.-D. Herzberg, P.T. Greenlees / Progress in Particle and Nuclear Physics 61 (2008) 674–720

Table 1

Table of known K-isomers in even-even nuclei in the heavy and superheavy elements

Nucleus	K^{π}	T _{1/2}	E _x	Decay Mode	Configuration	Reference
²⁴⁴ Cm	6+	34 ms	(1.040 MeV)	γ	$5/2^{+}[622]_{\nu} \otimes 7/2^{+}[624]_{\nu}$	[135,171]
²⁴⁶ Cm	8-	-	1.179 MeV	γ	$7/2^+[624]_{\nu}\otimes 9/2^-[734]_{\nu}$	[138]
²⁴⁸ Fm	_	\simeq 8 ms	-	γ	-	[148]
²⁵⁰ Fm	8-	1.92 s	1.195 MeV	γ	$7/2^+[624]_{\nu}\otimes 9/2^-[734]_{\nu}$	[82]
²⁵⁶ Fm	7-	70 ns	1.425 MeV	γ,SF	$7/2^+[633]_\pi \otimes 7/2^-[514]_\pi$	[69]
²⁵⁰ No	(6 ⁺)	42 μs	-	SF, γ ?	$(5/2^+[622]_\nu \otimes 7/2^+[624]_\nu)$	[118]
²⁵² No	8-	110 ms	1.254 MeV	γ	$7/2^+[624]_{\nu}\otimes 9/2^-[734]_{\nu}$	[169]
²⁵⁴ No	8-	(266 ms)	1.293 MeV	γ	$7/2^{-}[514]_{\pi} \otimes 9/2^{+}[624]_{\pi}$	[77,78]
²⁵⁴ No	_	184 μs	$\simeq 2.5 \text{ MeV}$	γ	_	[77,78]
²⁷⁰ Ds	9 ⁻ ,10 ⁻	6 ms	\simeq 1.13 MeV	α	$\frac{11/2^{-}[725]_{\nu} \otimes 7/2^{+}[613]_{\nu}}{11/2^{-}[725]_{\nu} \otimes 9/2^{+}[615]_{\nu}}$	[22]

In some cases the K^{π} or configuration assignments are tentative and have not been made on the basis of unambiguous experimental data. See relevant references for details.

²⁵¹ <i>Fm</i>	25 mus	?
²⁵³ No	31 <i>mus</i>	?
255 L r	1,4 ms	>720 keV

Les techniques expérimentales

La synthèse du résidu d'évaporation

Techniques

La détection

Les différents laboratoires

Le site de Dubna : Vassilissa + Gabriela

Improvements :

- γ detection :
 - modification of one Ge detector : crystal - front face cap shorter. The efficiency doubled (~18%)

β detection :

- Double Sided Silicon Strip Detector (100x100 mm2)
- Specific amplification for electrons
- Increased Pre-Amplifier sensitivity at low energy
- Thicker tunnel Si detectors, 32 strips
- Lower power consumption of PA

Recoil detection :

HUDERT CURIEN STRASBOUR

• replacing the 37° magnet by 8° magnet • thinner foils for ToF MCP detectors

Ge-detectors with **BGO-shields**

Le site de Dubna : Vassilissa + Gabriela

Perspectives et questions

13

Perspectives : quels noyaux ?

Courtesy of A. Lopez-Martens

244 Md

243 Fm

₇₈Pt,₇₉Au,₈₀Hg,₈₁Tl,₈₂Pb,₈₃Bi targets ₉₀Th, ₉₂U, ₉₄Pu, ₉₅Am, ₉₆Cm targets

		146		148		150		152		154		156		158		160	
244 Fm	245 Fm	246 Fm	247 Fm	248 Fm	249 Fm	250 Fm	251 Fm	252 Fm	253 Fm	254 Fm	255 Fm	256 Fm	257 Fm	258 Fm	259 Fm	260 Fm	
245 Md	246 Md	247 Md	248 Md	249 Md	250 Md	251 Md	252 Md	253 Md	254 Md	255 Md	256 Md	257 Md	258 Md	259 Md	260 Md	261 Md	
	102	248 No	249 No	250 No	251 No	252 No	253 No	254 No	255 No	256 No	257 No	258 No	259 No	260 No	261 No	262 No	263 No
	103	249 Lr	250 Lr	251 Lr	252 Lr	253 Lr	254 Lr	255 Lr	256 Lr	257 Lr	258 Lr	259 Lr	260 Lr	261 Lr	262 Lr	263 Lr	264 Lr
	104	2: Rf	Rf	252 Rf	253 Rf	254 Rf	255 Rf	256 Rf	257 Rf	258 Rf	259 Rf	260 Rf	261 Rf	262 Rf	263 Rf	264 Rf	265 Rf
	105	251 Db	r vél	iet o	∠o4 Db	255 Db	256 Db	257 Db	258 Db	259 Db	260 Db	261 Db	262 Db	263 Db	264 Db	265 Db	266 Db
	106	252 Sg	253 Sg	254 \$~	11 50	E.	257 Sg	258 Sg	259 Sg	260 Sg	261 Sg	262 Sg	263 Sg	264 Sg	265 Sg	266 Sg	267 Sg
	107	253 Bh	254 Bh	255 Bh	256 Bh	257 Bh	258 Bh	259 Bh	260 Bh	261 Bh	262 Bh	263 Bh	264 Bh	265 Bh	266 Bh	267 Bh	268 Bh

Spectroscopie de noyaux VHE possible jamais encore étudiée

Perspectives et

questions

Intérêt d'étudier les K-isomères si et seulement si on détermine de façon non ambigue (surpasser les faibles statistiques) :

-le spin

-la parité

-l'énergie d'excitation

Quelles contraintes réelles sur les modèles ?

Un des points clé pour la synthèse (ou l'estimation de section efficace de production) d'éléments superlourds est la hauteur de la barrière de fission. Peut-on l'estimer à partir d'un état isomérique mis en évidence?

Perspectives et questions

En stage :

travail bibliographique

participation au commissionning du nouveau séparateur (si calendrier compatible) Analyse et interprétation de données expérimentales

En thèse :

Participation au campagnes d'expériences Analyse d'un ou deux noyaux d'intérêt VHE sur le site de Dubna Participation active à des expériences sur d'autres sites : Jyväskylä et GANIL